Skip Headers
Oracle® Data Mining Concepts
11g Release 2 (11.2)

Part Number E16808-06
Go to Documentation Home
Home
Go to Book List
Book List
Go to Table of Contents
Contents
Go to Master Index
Master Index
Go to Feedback page
Contact Us

Go to previous page
Previous
PDF · Mobi · ePub

Index

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  R  S  T  U  W  X 

A

accuracy, 3.5.2.1, 5.3.1.1, 5.3.2
active learning, 18.1.4
active sampling, 17.1.2
ADP
See Automatic Data Preparation
algorithms
Apriori, 2.4.2, 8.3, 10, 19.2.4
Decision Tree, 2.4.1, 11, 19.2.4
Generalized Linear Models, 2.4.1, 12, 19.2.4
k-Means, 2.4.2, 7.4, 13, 19.2.4
Minimum Description Length, 2.4.1, 14, 19.2.4
Naive Bayes, 2.4.1, 15, 19.2.4
Non-Negative Matrix Factorization, 2.4.2, 16, 19.2.4
O-Cluster, 2.4.2, 7.4, 17, 19.2.4
One-Class Support Vector Machine, 2.4.2, 18.5
supervised, 2.4.1, 2.4.1
Support Vector Machine, 2.4.1, 18, 19.2.4
unsupervised, 2.4.2
anomaly detection, 2.3.2.1, 2.3.2.1, 2.3.3, 2.4.2, 5.3.2, 6, 7.1
apply
See scoring
Apriori, 1.1.7, 2.4.2, 10, 19.2.4
area under the curve, 5.2.3.2
artificial intelligence, 2.3
association rules, 1.1.7, 2.3.2.1, 2.3.3, 2.4.2, 8, 10
attribute importance, 2.3.3, 2.4.1, 3.5.1, 9, 14.1
attributes, 1.3.1, 2.3.3
Automatic Data Preparation, 1.2.2, 1.3.3, 2.5.1, 19.1

B

Bayes' Theorem, 15.1
binning, Preface, 2.9, 16.3, 19.2.1
equi-width, 13.2, 14.2, 17.3, 19.3.2.1
quantile, 19.3.2.1
supervised, 14.2, 15.3, 19.3.2.1
top-N frequency, 19.3.2.1

C

case table, 1.1.7, 1.3.2, 19.1.1
categorical attributes, 3.5.2.1, 5, 19.1.2
centroid, 7.1.1, 13.1.2
classification, 2.3.3, 2.4.1, 5
biasing, 5.3
binary, 5.1, 12.5
Decision Tree, 11
Generalized Linear Models, 12
logistic regression, 12.5
multiclass, 5.1
Naive Bayes, 15
one class, 6.1.1
Support Vector Machine, 18.4
clipping, 19.2.3
clustering, 2.3.2.1, 2.3.2.1, 2.3.3, 2.4.2, 7
hierarchical, 2.4.2, 7.2, 7.3
K-Means, 13.1
O-Cluster, 17
scoring, 2.3.2.1, 2.3.2.1
coefficients
Non-Negative Matrix Factorization, 2.4.2, 16.1
regression, 4.1.1, 4.1.1.3
computational learning, 1.1.6
confidence
Apriori, 2.4.2, 10.2.2, 10.5.2
association rules, 8.1.1
clustering, 7.2.2
defined, 1.1.2
predictive analytics, 3.1
confidence bounds, 2.4.1, 4.1.1.6, 12.1.1.3
confusion matrix, 1.3.3, 5.2.1, 5.3.1.1
cost matrix, 5.3.1, 5.3.1.3, 11.2.2
costs, 1.3.3, 5.3.1, 5.3.1.3, 5.3.1.3
CREATE_MODEL, 2.7.2
cube, 1.1.6

D

data mining
automated, 3
defined, 1.1
Oracle, 2
process, 1.3
data preparation, 1.2.2, 1.3.2, 2.5, 19
for Apriori, 10.3, 19.2.4
for Decision Tree, 19.2.4
for Generalized Linear Models, 12.3, 19.2.4
for k-Means, 13.3, 19.2.2, 19.2.4
for Minimum Description Length, 14.2, 19.2.4
for Naive Bayes, 15.3, 19.2.4
for Non-Negative Matrix Factorization, 19.2.2, 19.2.4
for O-Cluster, 17.3, 19.2.4
for Support Vector Machine, 19.2.2, 19.2.4
data types, 19.1.2
data warehouse, 1.1.7
DBMS_DATA_MINING, 2.7.2
DBMS_DATA_MINING_TRANSFORM, 2.7.2, 2.9
DBMS_FREQUENT_ITEMSET, 2.9
DBMS_PREDICTIVE_ANALYTICS, 2.7.2, 3.3
DBMS_STAT_FUNCS, 2.9
Decision Tree, 2.4.1, 3.5.3, 3.5.3, 11, 19.2.4
deployment, 1.3.4
deprecated features, Preface
descriptive models, 2.3.2
dimensioned data, 2.5
directed learning, 2.3.1
discretization
See binning
DMSYS schema
See desupported features
documentation, 2.8

E

embedded data preparation, 1.2.2, 2.5.1, 19
entropy, 11.2.1, 14.1.1, 14.1.1.3
Exadata, 2.2
Excel, 3.2
EXPLAIN, 2.7.2, 2.7.6

F

feature extraction, 2.3.2.1, 2.3.3, 2.4.2, 9, 16, 20.2.6, 20.3
feature selection
See attribute importance
frequent itemsets, 10.1, 10.4.2

G

Generalized Linear Models, 2.4.1, 12, 19.2.4
classification, 12.5.1
regression, 12.4
gini, 11.2.1
GLM
See Generalized Linear Models

H

hierarchies, 1.1.6, 2.4.2, 7.2, 7.3
histogram, 13.2

I

inductive inference, 1.1.6
itemsets, 10.4

J

Java API, Preface, 2.1, 2.7.7, 2.7.7

K

KDD, 1.1, Glossary
kernel, 2.1
k-Means, 2.4.2, 7.4, 13, 19.2.4

L

lift, 1.3.3, 5.2.2, 5.2.2.1, 10.5.3
linear regression, 2.4.1, 4.1.1.1, 12.4
logistic regression, 2.4.1, 12.5

M

machine learning, 2.3
market basket data, Preface, 1.1.7, 1.3.3
MDL, 2.4.1, 3.5.1
See Minimum Description Length
Minimum Description Length, 14, 19.2.4
mining functions, 2.3, 2.3.3
anomaly detection, 2.3.3, 2.4.2, 6
association rules, 2.3.3, 2.4.2, 8
attribute importance, 2.4.1, 9, 14.1
classification, 2.3.3, 2.4.1, 5
clustering, 2.3.3, 2.4.2, 7
feature extraction, 2.3.3, 2.4.2, 9, 9.3
regression, 2.3.3, 2.4.1, 4
missing value treatment, Preface, 19.1
model details, 1.3.4, 3.5.1, 3.5.3, 11.1.1
multicollinearity, 12.1.2
multidimensional analysis, 1.1.6, 2.9, 2.9
multivariate linear regression, 4.1.1.2

N

Naive Bayes, 2.4.1, 15, 19.2.1, 19.2.4
nested data, Preface, 2.5, 10.3.1
neural networks, 18.1.1
NMF
See Non-Negative Matrix Factorization
nonlinear regression, 4.1.1.4
Non-Negative Matrix Factorization, 2.4.2, 16, 19.2.4
nontransactional data, 8.2
normalization, Preface, 19.2.2, 19.2.2
min-max, 19.3.2.2
scale, 19.3.2.2
z-score, 19.3.2.2
numerical attributes, 5.1, 19.1.2

O

O-Cluster, 2.4.2, 7.4, 17, 19.2.4
OLAP, 1.1.6, 2.9
One-Class Support Vector Machine, 2.4.2, 18.5
Oracle Business Intelligence Suite Enterprise Edition, 2.9
Oracle Data Miner, Preface, 20.3
Oracle Data Mining discussion forum, 2.8.1
Oracle Data Mining documentation, 2.8
Oracle Database analytics, 2.9
Oracle Database kernel, 2.1
Oracle Database statistical functions, 2.9
Oracle OLAP, 2.9
Oracle Spatial, 2.9
Oracle Spreadsheet Add-In for Predictive Analytics
See Spreadsheet Add-In
Oracle Text, 2.9, 2.9, 20.4
outliers, 1.2.2, 6.1.3, 17.3.1, 19.2.3, 19.3.2.3
overfitting, 2.3.1.1, 11.2.3

P

PL/SQL API, 2.7, 2.7.2
PMML, 2.7, 2.7.5
PREDICT, 2.7.2, 2.7.6
PREDICTION_PROBABILITY, 2.7.3
predictive analytics, 2.7.2, 2.7.6, 3
predictive confidence, 3.2, 3.4, 3.5.2.1
predictive models, 2.3.1
prior probabilities, 5.3.2, 15.1
probability threshold, 5.2.2.1, 5.2.3, 5.2.3.4
PROFILE, 2.7.2, 2.7.6
pruning, 11.2.3

R

R, 2.7
radial basis functions, 18.1.1
Receiver Operating Characteristic
See ROC
regression, 2.3.3, 2.4.1, 4
coefficients, 4.1.1, 4.1.1.3
defined, 4.1.1
Generalized Linear Models, 12
linear, 4.1.1.1, 12.4
nonlinear, 4.1.1.4
ridge, 12.1.2
statistics, 4.2.1
Support Vector Machine, 18.6
ROC, 3.5.2, 5.2.3, 5.2.3.2
rules, 1.3.4
Apriori, 10.1
association rules, 8.1.1
clustering, 7.2.1
Decision Tree, 3.5.3, 3.5.3, 3.5.3, 11.1.1
defined, 1.1.2
PROFILE, 3.5.3

S

sample programs, 2.8.1
scoring, 2.3.2.1, 2.3.2.1, 2.3.2.1
anomaly detection, 2.3.2.1
classification, 2.3.1.2
clustering, 2.3.2.1
defined, 1.1.1
Exadata, 2.2
knowledge deployment, 1.3.4
model details, 1.3.4
Non-Negative Matrix Factorization, 16.1.2
O-Cluster, 17.1.4
real time, 1.3.4
regression, 2.3.1.1
supervised models, 2.3.1.2
unsupervised models, 2.3.2.1
singularity, 12.1.2
sparse data, Preface, 10.3, 19.1
Spreadsheet Add-In, 2.7.6, 2.8.1, 3.2
SQL data mining functions, 2.7, 2.7.3
SQL statistical functions, 2.9
star schema, 2.5, 10.3.1
statistics, 1.1.5
stratified sampling, 5.3.2, 6.1.1
supermodel, 2.5.1, 2.5.1
supervised learning, 2.3.1
support
Apriori, 2.4.2, 10.4.2, 10.5.1
association rules, 8.1.1
clustering, 7.2.2
defined, 1.1.2
Support Vector Machine, 2.4.1, 3.5.2, 18, 19.2.4
classification, 2.4.1, 18.4
Gaussian kernel, 2.4.1
linear kernel, 2.4.1
one class, 2.4.2, 18.5
regression, 2.4.1, 18.6
SVM
See Support Vector Machine

T

target, 2.3.1, 2.3.2.1
term extraction, 20.3
text mining, 20
data types, 20.2.2
Non-Negative Matrix Factorization, 16.1.3
pre-processing, 20.2
transactional data, 1.1.7, 1.3.3, 8.2, 10.3
transformations, 2.5.1, 2.7.2, 19.1, 19.2.4
transparency, 7.3, 11.1.1, 12.1.1.1, 19.1
trimming, 19.3.2.3

U

unstructured data, 2.5, 20.1
unsupervised learning, 2.3.2
UTL_NLA, 2.9

W

wide data, 9.1, 12.1.1.2
windsorize, 19.3.2.3

X

XML
Decision Tree, 3.5.3, 11.1.3
PROFILE, 3.5.3