

Oracle® TimesTen In-Memory Database
Replication Guide

11g Release 2 (11.2.2)
E21635-04

September 2012

Oracle TimesTen In-Memory Database Replication Guide, 11g Release 2 (11.2.2)

E21635-04

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xiii

Audience... xiii
Related documents.. xiii
Conventions ... xiii
Documentation Accessibility ... xiv

What's New.. xv

New features in Release 11.2.2.4.0 .. xv
New features in Release 11.2.2.2.0 .. xv
New features in Release 11.2.2.1.0 .. xv
New features in Release 11.2.2.0.0 .. xv

1 Overview of TimesTen Replication

What is replication? ... 1-1
Requirements for replication compatibility ... 1-2
Replication agents .. 1-2
Copying updates between databases ... 1-2

Default replication ... 1-2
Return receipt replication ... 1-4
Return twosafe replication.. 1-5

Types of replication schemes ... 1-6
Active standby pair with read-only subscribers.. 1-6
Full database replication or selective replication .. 1-8
Unidirectional or bidirectional replication... 1-8

Split workload configuration .. 1-9
Distributed workload ... 1-9

Direct replication or propagation ... 1-10
Cache groups and replication ... 1-12

Replicating an AWT cache group ... 1-12
Replicating an AWT cache group with a subscriber propagating to an Oracle database 1-13
Replicating a read-only cache group.. 1-13

Sequences and replication ... 1-14
Foreign keys and replication... 1-15
Aging and replication ... 1-15

iv

2 Getting Started

Configuring an active standby pair with one subscriber ... 2-1
Step 1: Create the DSNs for the master and the subscriber databases 2-2
Step 2: Create a table in one of the master databases.. 2-2
Step 3: Define the active standby pair ... 2-3
Step 4: Start the replication agent on a master database .. 2-3
Step 5: Set the state of a master database to 'ACTIVE'.. 2-3
Step 6. Create a user on the active database... 2-3
Step 7: Duplicate the active database to the standby database ... 2-3
Step 8: Start the replication agent on the standby database... 2-4
Step 9. Duplicate the standby database to the subscriber .. 2-4
Step 10: Start the replication agent on the subscriber ... 2-4
Step 11: Insert data into the table on the active database... 2-4
Step 12: Drop the active standby pair and the table ... 2-5

Configuring a replication scheme with one master and one subscriber 2-5
Step 1: Create the DSNs for the master and the subscriber ... 2-5
Step 2: Create a table and replication scheme on the master database 2-6
Step 3: Create a table and replication scheme on the subscriber database 2-6
Step 4: Start the replication agent on each database ... 2-6
Step 5: Insert data into the table on the master database ... 2-7
Step 6: Drop the replication scheme and table... 2-8

3 Defining an Active Standby Pair Replication Scheme

Restrictions on active standby pairs ... 3-1
Defining the DSNs for the databases... 3-2
Defining an active standby pair replication scheme... 3-2
Identifying the databases in the active standby pair .. 3-3
Table requirements and restrictions for active standby pairs ... 3-3
Using a return service .. 3-4

RETURN RECEIPT .. 3-4
RETURN RECEIPT BY REQUEST... 3-5
RETURN TWOSAFE.. 3-5
RETURN TWOSAFE BY REQUEST .. 3-6
NO RETURN... 3-6

Setting STORE attributes ... 3-6
Setting the return service timeout period... 3-8

Disabling return service blocking manually ... 3-8
Establishing return service failure/recovery policies ... 3-9

RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED 3-9
DISABLE RETURN.. 3-9
RESUME RETURN ... 3-10
DURABLE COMMIT.. 3-10
LOCAL COMMIT ACTION.. 3-10

Compressing replicated traffic .. 3-11
Port assignments ... 3-11
Setting the log failure threshold.. 3-11

Configuring network operations.. 3-12

v

Using automatic client failover for an active standby pair ... 3-13
Including or excluding database objects from replication.. 3-13
Materialized views in an active standby pair .. 3-14
Replicating sequences in an active standby pair .. 3-14

4 Administering an Active Standby Pair Without Cache Groups

Overview of master database states.. 4-1
Duplicating a database .. 4-2
Setting up an active standby pair with no cache groups .. 4-3
Recovering from a failure of the active database ... 4-4

Recovering when the standby database is ready .. 4-4
When replication is return receipt or asynchronous ... 4-4
When replication is return twosafe .. 4-4

Recovering when the standby database is not ready.. 4-5
Recover the active database... 4-5
Recover the standby database... 4-6

Failing back to the original nodes.. 4-6
Recovering from a failure of the standby database ... 4-6
Recovering from the failure of a subscriber database .. 4-7
Reversing the roles of the active and standby databases ... 4-7
Detection of dual active databases.. 4-8

5 Administering an Active Standby Pair with Cache Groups

Active standby pairs with cache groups .. 5-1
Setting up an active standby pair with a read-only cache group .. 5-2
Setting up an active standby pair with an AWT cache group ... 5-4
Recovering from a failure of the active database ... 5-4

Recovering when the standby database is ready .. 5-4
When replication is return receipt or asynchronous ... 5-4
When replication is return twosafe .. 5-5

Recovering when the standby database is not ready.. 5-5
Recover the active database... 5-6
Recover the standby database... 5-6

Failing back to the original nodes.. 5-7
Recovering from a failure of the standby database ... 5-7
Recovering from the failure of a subscriber database .. 5-8
Reversing the roles of the active and standby databases ... 5-9
Detection of dual active databases.. 5-9
Using a disaster recovery subscriber in an active standby pair .. 5-9

Requirements for using a disaster recovery subscriber with an active standby pair 5-10
Rolling out a disaster recovery subscriber .. 5-10
Switching over to the disaster recovery site.. 5-11

Creating a new active standby pair after switching to the disaster recovery site 5-12
Switching over to a single database .. 5-13

Returning to the original configuration at the primary site.. 5-14

vi

6 Altering an Active Standby Pair

Making DDL changes in an active standby pair .. 6-1
Creating a new PL/SQL object in an existing active standby pair ... 6-2
Restrictions on making DDL changes in an active standby pair .. 6-2
Examples: Making DDL changes in an active standby pair .. 6-2

Making other changes to an active standby pair.. 6-5
Examples: Altering an active standby pair... 6-6

7 Using Oracle Clusterware to Manage Active Standby Pairs

Overview .. 7-1
Active standby configurations ... 7-2
Required privileges.. 7-3
Hardware and software requirements.. 7-3
Restricted commands and SQL statements .. 7-3

The cluster.oracle.ini file .. 7-4
Configuring basic availability .. 7-5
Configuring advanced availability .. 7-5
Including cache groups in the active standby pair ... 7-6
Including the active standby pair in a cache grid ... 7-6
Implementing application failover .. 7-6
Recovering from permanent failure of both master nodes .. 7-8
Using the RepDDL attribute... 7-9

Creating and initializing a cluster.. 7-11
Install Oracle Clusterware ... 7-11
Install TimesTen on each host ... 7-11
Register the TimesTen cluster information ... 7-12
Start the TimesTen cluster agent... 7-12
Create and populate a TimesTen database on one host .. 7-12
Create sys.odbc.ini files on other hosts .. 7-12
Create a cluster.oracle.ini file .. 7-13
Create the virtual IP addresses (optional) ... 7-13
Create an active standby pair replication scheme.. 7-13
Start the active standby pair .. 7-13
Load cache groups .. 7-13
Including more than one active standby pair in a cluster... 7-14
Configuring an Oracle database as a disaster recovery subscriber ... 7-14
Configuring a read-only subscriber that is not managed by Oracle Clusterware................. 7-15

Using Oracle Clusterware with a TimesTen cache grid .. 7-15
Creating and initializing a cluster of cache grid members ... 7-16
Failure and recovery for active standby pair grid members .. 7-16
Making schema changes to active standby pairs in a grid.. 7-16

Add a cache group... 7-16
Drop a cache group.. 7-17
Change an existing cache group .. 7-17

Recovering from failures ... 7-17
How TimesTen performs recovery when Oracle Clusterware is configured 7-18
When an active database or its host fails ... 7-18

vii

When a standby database or its host fails.. 7-20
When read-only subscribers or their hosts fail ... 7-21
When failures occur on both master nodes ... 7-21

Automatic recovery when not attached to a grid.. 7-21
Manual recovery of both nodes of an active standby pair grid member......................... 7-22
Manual recovery for advanced availability ... 7-22
Manual recovery for basic availability.. 7-23
Manual recovery to the same master nodes when databases are corrupt....................... 7-23
Manual recovery when RETURN TWOSAFE is configured ... 7-24

When more than two master hosts fail .. 7-25
Performing a forced switchover after failure of the active database or host.......................... 7-25

Planned maintenance ... 7-25
Changing the schema ... 7-26
Performing a rolling upgrade of Oracle Clusterware software ... 7-26
Upgrading TimesTen.. 7-26
Adding a read-only subscriber to an active standby pair ... 7-26
Removing a read-only subscriber from an active standby pair ... 7-27
Adding an active standby pair to a cluster.. 7-27
Adding a read-only subscriber not managed by Oracle Clusterware..................................... 7-28
Rebuilding a read-only subscriber not managed by Oracle Clusterware............................... 7-29
Removing an active standby pair from a cluster.. 7-29
Adding a host to the cluster... 7-29
Removing a host from the cluster... 7-30
Reversing the roles of the master databases ... 7-30
Moving a database to a different host.. 7-31
Performing host or network maintenance... 7-31
Performing maintenance on the entire cluster.. 7-31
Changing user names or passwords .. 7-32

Monitoring cluster status ... 7-32
Obtaining cluster status.. 7-32
Message log files.. 7-35

8 TimesTen Configuration Attributes for Oracle Clusterware

List of attributes.. 8-1
Required attributes .. 8-5

MasterHosts .. 8-6
Conditionally required attributes ... 8-7

AppCheckCmd... 8-8
AppFailureInterval .. 8-9
AppName... 8-10
AppRestartAttempts... 8-11
AppStartCmd... 8-12
AppStopCmd... 8-13
AppType... 8-14
AppUptimeThreshold .. 8-15
CacheConnect .. 8-16
GridPort .. 8-17

viii

 MasterVIP.. 8-18
RemoteSubscriberHosts ... 8-19
RepBackupDir.. 8-20
SubscriberHosts... 8-21
SubscriberVIP .. 8-22
VIPInterface.. 8-23
VIPNetMask... 8-24

Optional attributes .. 8-25
AppFailoverDelay... 8-26
AppFailureThreshold ... 8-27
AppScriptTimeout .. 8-28
AutoRecover .. 8-29
DatabaseFailoverDelay... 8-30
FailureThreshold ... 8-31
MasterStoreAttribute .. 8-32
RepBackupPeriod.. 8-33
RepDDL .. 8-34
RepFullBackupCycle... 8-35
ReturnServiceAttribute .. 8-36
SubscriberStoreAttribute.. 8-37
TimesTenScriptTimeout ... 8-38

9 Defining Replication Schemes

Designing a highly available system ... 9-1
Considering failover and recovery scenarios... 9-2
Making decisions about performance and recovery tradeoffs .. 9-3
Distributing workloads ... 9-5

Defining a replication scheme ... 9-5
Owner of the replication scheme and replicated objects.. 9-6
Database names .. 9-6

Table requirements and restrictions for replication schemes ... 9-7
Defining replication elements ... 9-7

Defining the DATASTORE element .. 9-8
Defining table elements... 9-9
Replicating tables with foreign key relationships ... 9-9
Replicating sequences.. 9-9
Views and materialized views in a replicated database.. 9-10

Checking for replication conflicts on table elements .. 9-11
Setting transmit durability on data store elements .. 9-11
Using a return service ... 9-12

RETURN RECEIPT ... 9-13
RETURN RECEIPT BY REQUEST.. 9-13
RETURN TWOSAFE BY REQUEST ... 9-14
RETURN TWOSAFE... 9-15
NO RETURN.. 9-16

Setting STORE attributes .. 9-16
Setting the return service timeout period.. 9-18

ix

Managing return service timeout errors and replication state changes.................................. 9-18
When to manually disable return service blocking .. 9-19
Establishing return service failure/recovery policies .. 9-19

RETURN SERVICES {ON | OFF} WHEN REPLICATION STOPPED..................... 9-20
DISABLE RETURN... 9-21
RESUME RETURN ... 9-22
DURABLE COMMIT.. 9-22
LOCAL COMMIT ACTION.. 9-23

Compressing replicated traffic .. 9-23
Port assignments ... 9-24
Setting the log failure threshold.. 9-24
Replicating tables with different definitions... 9-25

Configuring network operations.. 9-26
Replication scheme syntax examples .. 9-27

Single subscriber schemes.. 9-28
Multiple subscriber schemes with return services and a log failure threshold 9-28
Replicating tables to different subscribers... 9-29
Propagation scheme.. 9-30
Bidirectional split workload schemes .. 9-30
Bidirectional distributed workload scheme .. 9-30

Creating replication schemes with scripts.. 9-31

10 Setting Up a Replicated System

Configuring the network ... 10-1
Network bandwidth requirements... 10-1
Replication in a WAN environment... 10-2
Configuring host IP addresses .. 10-2

Identifying database hosts and network interfaces using the ROUTE clause 10-3
Identifying database hosts on UNIX without using the ROUTE clause.......................... 10-3
Host name resolution on Windows... 10-4
User-specified addresses for TimesTen daemons and subdaemons................................ 10-5

Identifying the local host of a replicated database... 10-5
Setting up the replication environment.. 10-6

Establishing the databases ... 10-6
Connection attributes for replicated databases .. 10-6
Configuring parallel replication.. 10-7

Configuring automatic parallel replication.. 10-7
Configuring user-defined parallel replication for other replication schemes................. 10-8

Restrictions on user-defined parallel replication ... 10-9
Managing the transaction log on a replicated database .. 10-9

About log buffer flushing ... 10-9
About transaction log growth on a master database .. 10-10
Setting connection attributes for logging ... 10-10

Applying a replication scheme to a database .. 10-11
Duplicating a master database to a subscriber .. 10-12
Configuring a large number of subscribers ... 10-13
Replicating databases across releases ... 10-13

x

Starting and stopping the replication agents... 10-13
Setting the replication state of subscribers .. 10-15

11 Managing Database Failover and Recovery

Overview of database failover and recovery .. 11-1
General failover and recovery procedures ... 11-1

Subscriber failures... 11-2
Master failures ... 11-2
Automatic catch-up of a failed master database .. 11-3

When master catch-up is required for an active standby pair .. 11-4
Failures in bidirectional distributed workload schemes ... 11-4
Network failures.. 11-5
Failures involving sequences... 11-5

Recovering a failed database... 11-5
Recovering a failed database from the command line... 11-6
Recovering a failed database from a C program .. 11-6

Recovering nondurable databases ... 11-7
Writing a failure recovery script... 11-7

12 Monitoring Replication

Show state of replication agents... 12-1
Using ttStatus to obtain replication agent status .. 12-2
Using ttAdmin -query to confirm policy settings .. 12-2
Using ttDataStoreStatus to obtain replication agent status .. 12-2

Show master database information ... 12-3
Using ttRepAdmin to display information about the master database 12-3
Querying replication tables to obtain information about a master database......................... 12-4

Show subscriber database information .. 12-4
Using ttRepAdmin to display subscriber status... 12-4
Using ttReplicationStatus to display subscriber status ... 12-5
Querying replication tables to display information about subscribers................................... 12-5

Show the configuration of replicated databases ... 12-6
Using the ttIsql repschemes command to display configuration information 12-6
Using ttRepAdmin to display configuration information .. 12-7
Querying replication tables to display configuration information.. 12-8

Show replicated log records .. 12-9
Using ttRepAdmin to display bookmark location ... 12-9
Using ttBookMark to display bookmark location .. 12-10

Using ttRepAdmin to show replication status .. 12-10
MAIN thread status fields ... 12-12
Replication peer status fields... 12-13
TRANSMITTER thread status fields .. 12-13
RECEIVER thread status fields ... 12-14

Checking the status of return service transactions ... 12-15
Improving replication performance .. 12-17

xi

13 Altering Replication

Altering a replication scheme ... 13-1
Adding a table or sequence to an existing replication scheme... 13-2
Adding a PL/SQL object to an existing replication scheme... 13-3
Adding a DATASTORE element to an existing replication scheme 13-3

Including tables or sequences when you add a DATASTORE element 13-3
Excluding a table or sequence when you add a DATASTORE element.......................... 13-4

Dropping a table or sequence from a replication scheme... 13-4
Dropping a table or sequence that is replicated as part of a DATASTORE element 13-4
Dropping a table or sequence that is replicated as a TABLE or SEQUENCE element.. 13-5

Creating and adding a subscriber database .. 13-5
Dropping a subscriber database ... 13-6
Changing a TABLE or SEQUENCE element name.. 13-6
Replacing a master database ... 13-6
Eliminating conflict detection ... 13-6
Eliminating the return receipt service.. 13-7
Changing the port number .. 13-7
Changing the replication route ... 13-7
Changing the log failure threshold... 13-7

Altering a replicated table ... 13-8
Truncating a replicated table .. 13-8
Dropping a replication scheme... 13-8

14 Resolving Replication Conflicts

How replication conflicts occur .. 14-1
Update and insert conflicts .. 14-2
Delete/update conflicts.. 14-3

Using a timestamp to resolve conflicts ... 14-4
Timestamp comparisons for local updates.. 14-5

Configuring timestamp comparison.. 14-5
Including a timestamp column in replicated tables... 14-5
Configuring the CHECK CONFLICTS clause .. 14-5

Enabling system timestamp column maintenance ... 14-6
Enabling user timestamp column maintenance .. 14-7

Reporting conflicts .. 14-7
Reporting conflicts to a text file... 14-7
Reporting conflicts to an XML file .. 14-8
Reporting uniqueness conflicts ... 14-9
Reporting update conflicts... 14-10
Reporting delete/update conflicts.. 14-11
Suspending and resuming the reporting of conflicts... 14-12

The conflict report XML Document Type Definition .. 14-13
The main body of the document ... 14-14
The uniqueness conflict element... 14-14
The update conflict element .. 14-16

xii

The delete/update conflict element ... 14-18

Index

xiii

Preface

Oracle TimesTen In-Memory Database is a memory-optimized relational database.
Deployed in the application tier, Oracle TimesTen In-Memory Database operates on
databases that fit entirely in physical memory using standard SQL interfaces. High
availability for the in-memory database is provided through real-time transactional
replication.

Audience
This document is intended for application developers and system administrators who
use and administer TimesTen to TimesTen Replication.

To work with this guide, you should understand how database systems work. You
should also have knowledge of SQL (Structured Query Language) and either ODBC
(Open DataBase Connectivity) or JDBC (JavaDataBase Connectivity).

Related documents
TimesTen documentation is available on the product distribution media and on the
Oracle Technology Network:

http://www.oracle.com/technetwork/products/timesten/documentation

Conventions
TimesTen supports multiple platforms. Unless otherwise indicated, the information in
this guide applies to all supported platforms. The term Windows refers to all
supported Windows platforms. The term UNIX applies to all supported UNIX and
Linux platforms. See "Platforms" in Oracle TimesTen In-Memory Database Release Notes
for specific platform versions supported by TimesTen.

This document uses the following text conventions:

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database
unless otherwise noted.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

xiv

TimesTen documentation uses these variables to identify path, file and user names:

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

italic monospace Italic monospace type indicates a variable in a code example that you
must replace. For example:

Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation
directory.

[] Square brackets indicate that an item in a command line is optional.

{ } Curly braces indicated that you must choose one of the items separated
by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates alternative arguments.

. . . An ellipsis (. . .) after an argument indicates that you may use more
than one argument on a single command line.

% The percent sign indicates the UNIX shell prompt.

The number (or pound) sign indicates the UNIX root prompt.

Convention Meaning

install_dir The path that represents the directory where the current release of
TimesTen is installed.

TTinstance The instance name for your specific installation of TimesTen. Each
installation of TimesTen must be identified at install time with a unique
alphanumeric instance name. This name appears in the install path.

bits or bb Two digits, either 32 or 64, that represent either the 32-bit or 64-bit
operating system.

release or rr The first three parts in a release number, with or without dots. The first
three parts of a release number represent a major TimesTen release. For
example, 1122 or 11.2.2 represents TimesTen 11g Release 2 (11.2.2).

jdk_version Two digits that represent the version number of the major JDK release.
Specifically, 14 represent JDK 1.4; 5 represents JDK 5.

DSN The data source name.

Convention Meaning

xv

What's New

This preface summarizes the new features of Oracle TimesTen In-Memory Database
release 11.2.2 that are documented in this guide. It provides links to more information.

New features in Release 11.2.2.4.0
You can now specify an alias or the IP address of the network interface when you
want to use a specific local or remote network interface over which database
duplication occurs. For details, see "Duplicating a database" on page 4-2.

New features in Release 11.2.2.2.0
■ By default, replication is performed with a single thread. You can increase your

performance by configuring parallel replication, which configures multiple
threads for sending updates from the source database to the target database and
for applying the updates on the target database.

There are two types of parallel replication: automatic and user-defined. In this
release, automatic parallel replication is introduced. For more information, see
"Configuring parallel replication" on page 10-7.

New features in Release 11.2.2.1.0
■ You have additional control over TimesTen application behavior when Oracle

Clusterware is managing a TimesTen active standby pair. The
AppFailureInterval, AppRestartAttempts and AppUptimeThreshold
Clusterware attributes are new. See "Implementing application failover" on
page 7-6.

New features in Release 11.2.2.0.0
■ Durable commit behavior has changed. See "DURABLE COMMIT" on page 3-10

for active standby pairs and "DURABLE COMMIT" on page 9-22 for other
replication schemes.

■ LOB columns can be replicated. See "Table requirements and restrictions for active
standby pairs" on page 3-3 and "Table requirements and restrictions for replication
schemes" on page 9-7.

■ TimesTen provides in-memory columnar compression. However, you cannot
replicate tables with compressed columns. This restriction is mentioned in "Table

xvi

requirements and restrictions for active standby pairs" on page 3-3 and "Table
requirements and restrictions for replication schemes" on page 9-7.

1

Overview of TimesTen Replication 1-1

1Overview of TimesTen Replication

The following sections provide an overview of TimesTen replication:

■ What is replication?

■ Requirements for replication compatibility

■ Replication agents

■ Copying updates between databases

■ Types of replication schemes

■ Cache groups and replication

■ Sequences and replication

■ Foreign keys and replication

■ Aging and replication

What is replication?
Replication is the process of maintaining copies of data in multiple databases. The
purpose of replication is to make data highly available to applications with minimal
performance impact. TimesTen recommends the active standby pair configuration for
highest availability. In an active standby pair replication scheme, the data is copied
from the active database to the standby database before being copied to read-only
subscribers.

In addition to providing recovery from failures, replication schemes can also distribute
application workloads across multiple databases for maximum performance and
facilitate online upgrades and maintenance.

Replication is the process of copying data from a master database to a subscriber
database. Replication is controlled by replication agents for each database. The
replication agent on the master database reads the records from the transaction log for
the master database. It forwards changes to replicated elements to the replication
agent on the subscriber database. The replication agent on the subscriber database
then applies the updates to its database. If the subscriber replication agent is not
running when the updates are forwarded by the master, the master retains the updates
in its transaction log until they can be applied at the subscriber database.

An entity that is replicated between databases is called a replication element. TimesTen
supports databases, cache groups, tables and sequences as replication elements.
TimesTen also replicates XLA bookmarks. An active standby pair is the only
supported replication scheme for databases with cache groups.

Requirements for replication compatibility

1-2 Oracle TimesTen In-Memory Database Replication Guide

Requirements for replication compatibility
TimesTen replication is supported only between identical platforms and bit-levels.
Although you can replicate between databases that reside on the same host,
replication is generally used for copying updates into a database that resides on
another host. This helps prevent data loss from host failure.

The databases must have DSNs with identical DatabaseCharacterSet and
TypeMode database attributes.

Replication agents
Replication between databases is controlled by a replication agent. Each database is
identified by:

■ A database name derived from the file system's path name for the database

■ A host name

The replication agent on the master database reads the records from the transaction
log and forwards any detected changes to replicated elements to the replication agent
on the subscriber database. The replication agent on the subscriber database then
applies the updates to its database. If the subscriber agent is not running when the
updates are forwarded by the master, the master retains the updates in the log until
they can be transmitted.

The replication agents communicate through TCP/IP stream sockets. The replication
agents obtain the TCP/IP address, host name, and other configuration information
from the replication tables described in Oracle TimesTen In-Memory Database System
Tables and Views Reference.

Copying updates between databases
Updates are copied between databases in asynchronously by default. Asynchronous
replication provides the best performance, but it does not provide the application with
confirmation that the replicated updates have been committed on the subscriber
databases. For applications that need higher levels of confidence that the replicated
data is consistent between the master and subscriber databases, you can enable either
return receipt or return twosafe service.

The return receipt service loosely synchronizes the application with the replication
mechanism by blocking the application until replication confirms that the update has
been received by the subscriber. The return twosafe service provides a fully
synchronous option by blocking the application until replication confirms that the
update has been both received and committed on the subscriber.

Return receipt replication has less performance impact than return twosafe at the
expense of less synchronization. The operational details for asynchronous, return
receipt, and return twosafe replication are discussed in these sections:

■ Default replication

■ Return receipt replication

■ Return twosafe replication

Default replication
When using default TimesTen replication, an application updates a master database
and continues working without waiting for the updates to be received and applied by

Copying updates between databases

Overview of TimesTen Replication 1-3

the subscribers. The master and subscriber databases have internal mechanisms to
confirm that the updates have been successfully received and committed by the
subscriber. These mechanisms ensure that updates are applied at a subscriber only
once, but they are completely independent of the application.

Default TimesTen replication provides maximum performance, but the application is
completely decoupled from the receipt process of the replicated elements on the
subscriber.

Figure 1–1 Basic asynchronous replication cycle

The default TimesTen replication cycle is:

1. The application commits a local transaction to the master database and is free to
continue with other transactions.

2. During the commit, the TimesTen daemon writes the transaction update records
to the transaction log buffer.

3. The replication agent on the master database directs the daemon to flush a batch
of update records for the committed transactions from the log buffer to a
transaction log file. This step ensures that, if the master fails and you need to
recover the database from the checkpoint and transaction log files, the recovered
master contains all the data it replicated to the subscriber.

4. The master replication agent forwards the batch of transaction update records to
the subscriber replication agent, which applies them to the subscriber database.
Update records are flushed to disk and forwarded to the subscriber in batches of
256K or less, depending on the master database's transaction load. A batch is
created when there is no more log data in the transaction log buffer or when the
current batch is roughly 256K bytes.

5. The subscriber replication agent sends an acknowledgement back to the master
replication agent that the batch of update records was received. The
acknowledgement includes information on which batch of records the subscriber
last flushed to disk. The master replication agent is now free to purge from the
transaction log the update records that have been received, applied, and flushed to
disk by all subscribers and to forward another batch of update records, while the
subscriber replication agent asynchronously continues on to Step 6.

Application

Log Files
DSName1.log2

DSName1.log1
DSName1.log0

3) Flush batch of update
 records to disk

Log Files
DSName2.log2

DSName2.log1
DSName2.log0

Transaction
Log Buffer

1) Commit transaction

2) Write update
 records
 to log

4) Send batch of
 update records
 to subscriber

5) Acknowledge receipt of batch

6) Write each received
 update record to log

7) In a separate thread,
 flush batch of
 updates to disk

Master Database Subscriber Database

Transaction
Log Buffer

Copying updates between databases

1-4 Oracle TimesTen In-Memory Database Replication Guide

6. The replication agent at the subscriber updates the database and directs the
daemon to write the transaction update records to the transaction log buffer.

7. The replication agent at the subscriber database uses a separate thread to direct the
daemon to flush the update records to a transaction log file.

Return receipt replication
The return receipt service provides a level of synchronization between the master and
a subscriber database by blocking the application after commit on the master until the
updates of the committed transaction have been received by the subscriber.

An application requesting return receipt updates the master database in the same
manner as in the basic asynchronous case. However, when the application commits a
transaction that updates a replicated element, the master database blocks the
application until it receives confirmation that the updates for the completed
transaction have been received by the subscriber.

Return receipt replication trades some performance in order to provide applications
with the ability to ensure higher levels of data integrity and consistency between the
master and subscriber databases. In the event of a master failure, the application has a
high degree of confidence that a transaction committed at the master persists in the
subscribing database.

Figure 1–2 Return receipt replication

Figure 1–2 shows that the return receipt replication cycle is the same as shown for the
basic asynchronous cycle in Figure 1–1, only the master replication agent blocks the
application thread after it commits a transaction (Step 1) and retains control of the
thread until the subscriber acknowledges receipt of the update batch (Step 5). Upon
receiving the return receipt acknowledgement from the subscriber, the master
replication agent returns control of the thread to the application (Step 6), freeing it to
continue executing transactions.

Applications

Log Files
DSName.log2

DSName.log1
DSName.log0

3) Flush batch of update
 records to disk

Log Files
DSName.log2

DSName.log1
DSName.log0

Transaction
Log Buffer

2) Write update
 records
 to log

4) Send batch of
 update records
 to subscriber

5) Acknowledge receipt of batch

7) Write each received
 update record to log

8) In a separate thread,
 flush batch of
 updates to disk

Master Database Subscriber Database

Transaction
Log Buffer

6) Unblock
 thread

1) Commit
 transaction
 and block
 thread

Copying updates between databases

Overview of TimesTen Replication 1-5

If the subscriber is unable to acknowledge receipt of the transaction within a
configurable timeout period (default is 10 seconds), the master replication agent
returns a warning stating that it did not receive acknowledgement of the update from
the subscriber and returns control of the thread to the application. The application is
then free to commit another transaction to the master, which continues replication to
the subscriber as before. Return receipt transactions may time out for many reasons.
The most likely causes for timeout are the network, a failed replication agent, or the
master replication agent may be so far behind with respect to the transaction load that
it cannot replicate the return receipt transaction before its timeout expires. For
information on how to manage return-receipt timeouts, see "Managing return service
timeout errors and replication state changes" on page 9-18.

See "RETURN RECEIPT" on page 9-13 for information on how to configure replication
for return receipt.

Return twosafe replication
The return twosafe service provides fully synchronous replication between the master
and subscriber. Unlike the previously described replication modes, where transactions
are transmitted to the subscriber after being committed on the master, transactions in
twosafe mode are first committed on the subscriber before they are committed on the
master.

Figure 1–3 Return twosafe replication

The following describes the replication behavior between a master and subscriber
configured for return twosafe replication:

1. The application commits the transaction on the master database.

2. The master replication agent writes the transaction records to the log and inserts a
special precommit log record before the commit record. This precommit record
acts as a place holder in the log until the master replication receives an
acknowledgement that indicates the status of the commit on the subscriber.

Applications

3) Send batch of update
 records to subscriber

5) Acknowledge commit of
 transaction on the subscriber

Master Database Subscriber Database

Transaction
Log Buffer

7) Unblock
 thread

1) Block
 thread

4) Commit transaction
 on the subscriber

6) Commit transaction
 on the master

2) Write update
 records to log

Types of replication schemes

1-6 Oracle TimesTen In-Memory Database Replication Guide

3. The master replication agent transmits the batch of update records to the
subscriber.

4. The subscriber replication agent commits the transaction on the subscriber
database.

5. The subscriber replication agent returns an acknowledgement back to the master
replication agent with notification of whether the transaction was committed on
the subscriber and whether the commit was successful.

6. If the commit on the subscriber was successful, the master replication agent
commits the transaction on the master database.

7. The master replication agent returns control to the application.

If the subscriber is unable to acknowledge commit of the transaction within a
configurable timeout period (default is 10 seconds) or if the acknowledgement
from the subscriber indicates the commit was unsuccessful, the replication agent
returns control to the application without committing the transaction on the
master database. The application can then to decide whether to unconditionally
commit or retry the commit. You can optionally configure your replication scheme
to direct the master replication agent to commit all transactions that time out.

See "RETURN TWOSAFE" on page 9-15 for information on how to configure
replication for return twosafe.

Types of replication schemes
You create a replication scheme to define a specific configuration of master and
subscriber databases. This section describes the possible relationships you can define
between master and subscriber databases when creating a replication scheme.

When defining a relationship between a master and subscriber, consider these
replication schemes:

■ Active standby pair with read-only subscribers

■ Full database replication or selective replication

■ Unidirectional or bidirectional replication

■ Direct replication or propagation

Active standby pair with read-only subscribers
Figure 1–4 shows an active standby pair replication scheme with an active database, a
standby database, and four read-only subscriber databases.

Note: Transmission of return twosafe transactions is nondurable, so
the master replication agent does not flush the log records to disk
before sending them to the subscriber, as it does by default when
replication is configured for asynchronous or return receipt
replication.

Types of replication schemes

Overview of TimesTen Replication 1-7

Figure 1–4 Active standby pair

The active standby pair can replicate a whole database or select elements like tables
and cache groups.

In an active standby pair, two databases are defined as masters. One is an active
database, and the other is a standby database. The application updates the active
database directly. Applications cannot update the standby database. It receives the
updates from the active database and propagates the changes to as many as 127
read-only subscriber databases. This arrangement ensures that the standby database is
always ahead of the subscriber databases and enables rapid failover to the standby
database if the active database fails.

Only one of the master databases can function as an active database at a specific time.
You can manage failover and recovery of an active standby pair with Oracle
Clusterware. See Chapter 7, "Using Oracle Clusterware to Manage Active Standby
Pairs". You can also manage failover and recovery manually. See Chapter 4,
"Administering an Active Standby Pair Without Cache Groups".

If the standby database fails, the active database can replicate changes directly to the
read-only subscribers. After the standby database has been recovered, it contacts the
active database to receive any updates that have been sent to the subscribers while the
standby was down or was recovering. When the active and the standby databases
have been synchronized, then the standby resumes propagating changes to the
subscribers.

For details about setting up an active standby pair, see "Setting up an active standby
pair with no cache groups" on page 4-3.

Applications

Read-only subscribers

Replication

Propagation

Active
database

Standby
database

Types of replication schemes

1-8 Oracle TimesTen In-Memory Database Replication Guide

Full database replication or selective replication
Figure 1–5 illustrates a full replication scheme in which the entire master database is
replicated to the subscriber.

Figure 1–5 Replicating the entire master database

You can also configure your master and subscriber databases to selectively replicate
some elements in a master database to subscribers. Figure 1–6 shows examples of
selective replication. The left side of the figure shows a master database that replicates
the same selected elements to multiple subscribers, while the right side shows a master
that replicates different elements to each subscriber.

Figure 1–6 Replicating selected elements to multiple subscribers

Unidirectional or bidirectional replication
So far in this chapter, we have described unidirectional replication, where a master
database sends updates to one or more subscriber databases. However, you can also
configure databases to operate bidirectionally, where each database is both a master
and a subscriber.

These are basic ways to use bidirectional replication:

■ Split workload configuration

Master Database Subscriber Database

Applications

Updates

Update
Records

Master Database

Subscriber Database

Applications

Subscriber Database

Subscriber Data Store

Master Database

Applications

Subscriber Database

Subscriber Database

Replicating same elements
to each subscriber

Replicating different elements
to each subscriber

Types of replication schemes

Overview of TimesTen Replication 1-9

■ Distributed workload

Split workload configuration
In a split workload configuration, each database serves as a master for some elements
and a subscriber for others.

Consider the example shown in Figure 1–7, where the accounts for Chicago are
processed on database A while the accounts for New York are processed on database
B.

Figure 1–7 Split workload bidirectional replication

Distributed workload
In a distributed workload replication scheme, user access is distributed across
duplicate application/database combinations that replicate any update on any element
to each other. In the event of a failure, the affected users can be quickly shifted to any
application/database combination.The distributed workload configuration is shown
in Figure 1–8. Users access duplicate applications on each database, which serves as
both master and subscriber for the other database.

Figure 1–8 Distributed workload configuration

When databases are replicated in a distributed workload configuration, it is possible
for separate users to concurrently update the same rows and replicate the updates to
one another. Your application should ensure that such conflicts cannot occur, that they

 Database A Database B

Applications
for Chicago

Applications
for New York

Update

 Database A Database B

Applications Applications

Update

Types of replication schemes

1-10 Oracle TimesTen In-Memory Database Replication Guide

be acceptable if they do occur, or that they can be successfully resolved using the
conflict resolution mechanism described in Chapter 14, "Resolving Replication
Conflicts".

Direct replication or propagation
You can define a subscriber to serve as a propagator that receives replicated updates
from a master and passes them on to subscribers of its own.

Propagators are useful for optimizing replication performance over lower-bandwidth
network connections, such as those between servers in an intranet. For example,
consider the direct replication configuration illustrated in Figure 1–9, where a master
directly replicates to four subscribers over an intranet connection. Replicating to each
subscriber over a network connection in this manner is an inefficient use of network
bandwidth.

Figure 1–9 Master replicating directly to multiple subscribers over a network

For optimum performance, consider the configuration shown in Figure 1–10, where
the master replicates to a single propagator over the network connection. The
propagator in turn forwards the updates to each subscriber on its local area network.

Note: Do not use a distributed workload configuration with the
return twosafe return service.

Subscribers

Application

Master

Intranet

Types of replication schemes

Overview of TimesTen Replication 1-11

Figure 1–10 Master replicating to a single propagator over a network

Propagators are also useful for distributing replication loads in configurations that
involve a master database that must replicate to a large number of subscribers. For
example, it is more efficient for the master to replicate to three propagators, rather
than directly to the 12 subscribers as shown in Figure 1–11.

Figure 1–11 Using propagators to replicate to many subscribers

Propagator

Subscribers

Application

Master

Intranet

Applications

Master

Propagators

Subscribers

Cache groups and replication

1-12 Oracle TimesTen In-Memory Database Replication Guide

Cache groups and replication
As described in Oracle In-Memory Database Cache User's Guide, a cache group is a group
of tables stored in a central Oracle database that are cached in a local Oracle
In-Memory Database Cache (IMDB Cache). This section describes how cache groups
can be replicated between TimesTen databases. You can achieve high availability by
using an active standby pair to replicate asynchronous writethrough cache groups or
read-only cache groups.

This section describes the following ways to replicate cache groups:

■ Replicating an AWT cache group

■ Replicating an AWT cache group with a subscriber propagating to an Oracle
database

■ Replicating a read-only cache group

 See Chapter 5, "Administering an Active Standby Pair with Cache Groups" for details
about configuring replication of cache groups.

Replicating an AWT cache group
An asynchronous writethrough (AWT) cache group can be configured as part of an
active standby pair with optional read-only subscribers to ensure high availability and
to distribute the application workload. Figure 1–12 shows this configuration.

Figure 1–12 AWT cache group replicated by an active standby pair

Application updates are made to the active database, the updates are replicated to the
standby database, and then the updates are asynchronously written to the Oracle
database by the standby. At the same time, the updates are also replicated from the

Note: Each propagator is one-hop, which means that you can
forward an update only once. You cannot have a hierarchy of
propagators where propagators forward updates to other
propagators.

Oracle Database

Application
updates

Active
database

Cache tables Cache tables

Standby
database

AWT updates

Replicated
updates

Non-cache
tables

Non-cache
tables

Read-only
subscriber

Read-only
subscriber

Replicated
updates

Cache groups and replication

Overview of TimesTen Replication 1-13

standby to the read-only subscribers, which may be used to distribute the load from
reading applications. The tables on the read-only subscribers are not in cache groups.

When there is no standby database, the active both accepts application updates and
writes the updates asynchronously to the Oracle database and the read-only
subscribers. This situation can occur when the standby has not yet been created, or
when the active fails and the standby becomes the new active. TimesTen reconfigures
the AWT cache group when the standby becomes the new active.

If a failure occurs on the node where the active database resides, the standby node
becomes the new active node. TimesTen automatically reconfigures the AWT cache
group so that it can be updated directly by the application and continue to propagate
the updates to Oracle asynchronously.

Replicating an AWT cache group with a subscriber propagating to an Oracle database
You can recover from a complete failure of a site by creating a special disaster recovery
read-only subscriber on a remote site as part of the active standby pair replication
configuration. Figure 1–13 shows this configuration.

Figure 1–13 Disaster recovery configuration with active standby pair

The standby database sends updates to cache group tables on the read-only subscriber.
This special subscriber is located at a remote disaster recovery site and can propagate
updates to a second Oracle database, also located at the disaster recovery site. You can
set up more than one disaster recovery site with read-only subscribers and Oracle
databases. See "Using a disaster recovery subscriber in an active standby pair" on
page 5-9.

Replicating a read-only cache group
A read-only cache group enforces caching behavior in which committed updates on
the Oracle tables are automatically refreshed to the corresponding TimesTen cache
tables. Figure 1–14 shows a read-only cache group replicated by an active standby
pair.

Oracle Database

Application
updates

Active
database

Cache tables Cache tables

Standby
database

AWT updates

Replicated
updates Read-only

subscriber

Replicated
updates

Oracle Database

Cache tables

AWT updates

Local site Remote site

Sequences and replication

1-14 Oracle TimesTen In-Memory Database Replication Guide

Figure 1–14 Read-only cache group replicated by an active standby pair

When the read-only cache group is replicated by an active standby pair, the cache
group on the active database is autorefreshed from the Oracle database and replicates
the updates to the standby, where AUTOREFRESH is also configured on the cache
group but is in the PAUSED state. In the event of a failure of the active, TimesTen
automatically reconfigures the standby to be autorefreshed when it takes over for the
failed master database by setting the AUTOREFRESH STATE to ON.

TimesTen also tracks whether updates that have been autorefreshed from the Oracle
database to the active database have been replicated to the standby. This ensures that
the autorefresh process picks up from the correct point after the active fails, and no
autorefreshed updates are lost.

This configuration may also include read-only subscriber databases.This allows the
read workload to be distributed across many databases. The cache groups on the
standby database replicate to regular (non-cache) tables on the subscribers.

Sequences and replication
In some replication configurations, you may need to keep sequences synchronized
between two or more databases. For example, you may have a master database
containing a replicated table that uses a sequence to fill in the primary key value for
each row. The subscriber database is used as a hot backup for the master database. If
updates to the sequence's current value are not replicated, insertions of new rows on
the subscriber after the master has failed could conflict with rows that were originally
inserted on the master.

TimesTen replication allows the incremented sequence value to be replicated to
subscriber databases, ensuring that rows in this configuration inserted on either
database does not conflict. See "Replicating sequences" on page 9-9 for details on
writing a replication scheme to replicate sequences.

Oracle Database

Application
updates

Active
database

Cache tables Cache tables

Standby
database

Replicated
updates

Non-cache
tables

Non-cache
tables

Read-only
subscriber

Read-only
subscriber

Replicated
updates

Autorefresh
updates

Aging and replication

Overview of TimesTen Replication 1-15

Foreign keys and replication
If a table with a foreign key configured with ON DELETE CASCADE is replicated, then
the matching foreign key on the subscriber must also be configured with ON DELETE
CASCADE. In addition, you must replicate any other table with a foreign key
relationship to that table. This requirement prevents foreign key conflicts from
occurring on subscriber tables when a cascade deletion occurs on the master database.

TimesTen replicates a cascade deletion as a single operation, rather than replicating to
the subscriber each individual row deletion which occurs on the child table when a
row is deleted on the parent. As a result, any row on the child table on the subscriber
database, which contains the foreign key value that was deleted on the parent table, is
also deleted, even if that row did not exist on the child table on the master database.

Aging and replication
When a table or cache group is configured with least recently used (LRU) or
time-based aging, the following rules apply to the interaction with replication:

■ The aging configuration on replicated tables and cache groups must be identical
on every peer database.

■ If the replication scheme is an active standby pair, then aging is performed only on
the active database. Deletes that result from aging are then replicated to the
standby database. The aging configuration must be set to ON on both the active
and standby databases. TimesTen automatically determines which database is
actually performing the aging based on its current role as active or standby.

■ In a replication scheme that is not an active standby pair, aging is performed
individually in each database. Deletes performed by aging are not replicated to
other databases.

■ When an asynchronous writethrough cache group is in a database that is
replicated by an active standby pair, delete operations that result from aging are
not propagated to the Oracle database.

Aging and replication

1-16 Oracle TimesTen In-Memory Database Replication Guide

2

Getting Started 2-1

2Getting Started

This chapter describes how to configure and start up sample replication schemes. It
includes these topics:

■ Configuring an active standby pair with one subscriber

■ Configuring a replication scheme with one master and one subscriber

You must have the ADMIN privilege to complete the procedures in this chapter.

Configuring an active standby pair with one subscriber
This section describes how to create an active standby pair with one subscriber. The
active database is master1. The standby database is master2. The subscriber
database is subscriber1. To keep the example simple, all databases reside on the
same computer, server1.

Figure 2–1 shows this configuration.

Figure 2–1 Active standby pair with one subscriber

This section includes the following topics:

Applications

master1

master2

Read-only
subscriber

subscriber1

Active
database

Standby
database

Configuring an active standby pair with one subscriber

2-2 Oracle TimesTen In-Memory Database Replication Guide

■ Step 1: Create the DSNs for the master and the subscriber databases

■ Step 2: Create a table in one of the master databases

■ Step 3: Define the active standby pair

■ Step 4: Start the replication agent on a master database

■ Step 5: Set the state of a master database to 'ACTIVE'

■ Step 6. Create a user on the active database

■ Step 7: Duplicate the active database to the standby database

■ Step 8: Start the replication agent on the standby database

■ Step 9. Duplicate the standby database to the subscriber

■ Step 10: Start the replication agent on the subscriber

■ Step 11: Insert data into the table on the active database

■ Step 12: Drop the active standby pair and the table

Step 1: Create the DSNs for the master and the subscriber databases
Create DSNs named master1, master2 and subscriber1 as described in
"Managing TimesTen Databases" in Oracle TimesTen In-Memory Database Operations
Guide.

On UNIX systems, use a text editor to create the following odbc.ini file:

[master1]
DRIVER=install_dir/lib/libtten.so
DataStore=/tmp/master1
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
[master2]
DRIVER=install_dir/lib/libtten.so
DataStore=/tmp/master2
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
[subscriber1]
DRIVER=install_dir/lib/libtten.so
DataStore=/tmp/subscriber1
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

On Windows, use the ODBC Administrator to set the same connection attributes. Use
defaults for all other settings.

Step 2: Create a table in one of the master databases
Use the ttIsql utility to connect to the master1 database:

% ttIsql master1

Copyright (c) 1996-2011, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=master1";
Connection successful: DSN=master1;UID=terry;DataStore=/tmp/master1;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;TypeMode=0;
(Default setting AutoCommit=1)

Configuring an active standby pair with one subscriber

Getting Started 2-3

Command>

Create a table called tab with columns a and b:

Command> CREATE TABLE tab (a NUMBER NOT NULL,
 > b CHAR(18),
 > PRIMARY KEY (a));

Step 3: Define the active standby pair
Define the active standby pair on master1:

Command> CREATE ACTIVE STANDBY PAIR master1, master2
 > SUBSCRIBER subscriber1;

For more information about defining an active standby pair, see Chapter 3, "Defining
an Active Standby Pair Replication Scheme".

Step 4: Start the replication agent on a master database
Start the replication agent on master1:

Command> CALL ttRepStart;

Step 5: Set the state of a master database to 'ACTIVE'
The state of a new database in an active standby pair is 'IDLE' until the active
database has been set.

Use the ttRepStateSet built-in procedure to designate master1 as the active
database:

Command> CALL ttRepStateSet('ACTIVE');

Verify the state of master1:

Command> CALL ttRepStateGet;
< ACTIVE, NO GRID >
1 row found.

Step 6. Create a user on the active database
Create a user terry with a password of terry and grant terry the ADMIN privilege.
Creating a user with the ADMIN privilege is required by Access Control for the next
step.

Command> CREATE USER terry IDENTIFIED BY terry;
User created.
Command> GRANT admin TO terry;

Step 7: Duplicate the active database to the standby database
Exit ttIsql and use the ttRepAdmin utility with the -duplicate option to
duplicate the active database to the standby database. If you are using two different
hosts, enter the ttRepAdmin command from the target host.

% ttRepAdmin -duplicate -from master1 -host server1 -uid terry -pwd terry
"dsn=master2"

Configuring an active standby pair with one subscriber

2-4 Oracle TimesTen In-Memory Database Replication Guide

Step 8: Start the replication agent on the standby database
Use ttIsql to connect to master2 and start the replication agent:

% ttIsql master2
Copyright (c) 1996-2011, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=master2";
Connection successful: DSN=master2;UID=terry;DataStore=/tmp/master2;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;TypeMode=0;
(Default setting AutoCommit=1)
Command> CALL ttRepStart;

Starting the replication agent for the standby database automatically sets its state to
'STANDBY'. Verify the state of master2:

Command> CALL ttRepStateGet;
< STANDBY, NO GRID >
1 row found.

Step 9. Duplicate the standby database to the subscriber
Use the ttRepAdmin utility to duplicate the standby database to the subscriber
database:

% ttRepAdmin -duplicate -from master2 -host server1 -uid terry -pwd terry
"dsn=subscriber1"

Step 10: Start the replication agent on the subscriber
Use ttIsql to connect to subscriber1 and start the replication agent. Verify the
state of subscriber1.

% ttIsql subscriber1

Copyright (c) 1996-2011, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=subscriber1";
Connection successful: DSN=subscriber1;UID=terry;DataStore=/stmp/subscriber1;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;TypeMode=0;
(Default setting AutoCommit=1)
Command> CALL ttRepStart;
Command> call ttRepStateGet;
< IDLE, NO GRID >
1 row found.

Step 11: Insert data into the table on the active database
Insert a row into the tab table on master1.

Command> INSERT INTO tab VALUES (1,'Hello');
1 row inserted.
Command> SELECT * FROM tab;
< 1, Hello >
1 row found.

Verify that the insert is replicated to master2 and subscriber1.

Command> SELECT * FROM tab;
< 1, Hello >

Configuring a replication scheme with one master and one subscriber

Getting Started 2-5

1 row found.

Step 12: Drop the active standby pair and the table
Stop the replication agents on each database:

Command> CALL ttRepStop;

Drop the active standby pair on each database. You can then drop the table tab on
any database in which you have dropped the active standby pair.

Command> DROP ACTIVE STANDBY PAIR;
Command> DROP TABLE tab;

Configuring a replication scheme with one master and one subscriber
This section describes how to configure a replication scheme that replicates the
contents of a single table in a master database (masterds) to a table in a subscriber
database (subscriberds). To keep the example simple, both databases reside on the
same computer.

Figure 2–2 Simple replication scheme

This section includes the following topics:

■ Step 1: Create the DSNs for the master and the subscriber

■ Step 2: Create a table and replication scheme on the master database

■ Step 3: Create a table and replication scheme on the subscriber database

■ Step 4: Start the replication agent on each database

■ Step 5: Insert data into the table on the master database

■ Step 6: Drop the replication scheme and table

Step 1: Create the DSNs for the master and the subscriber
Create DSNs named masterds and subscriberds as described in "Managing
TimesTen Databases" in Oracle TimesTen In-Memory Database Operations Guide.

On UNIX systems, use a text editor to create the following odbc.ini file on each
database:

[masterds]
DataStore=/tmp/masterds
DatabaseCharacterSet=AL32UTF8

Application

masterds
database

subscriberds
database

tab tab

Configuring a replication scheme with one master and one subscriber

2-6 Oracle TimesTen In-Memory Database Replication Guide

ConnectionCharacterSet=AL32UTF8
[subscriberds]
DataStore=/tmp/subscriberds
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

On Windows, use the ODBC Administrator to set the same connection attributes. Use
defaults for all other settings.

Step 2: Create a table and replication scheme on the master database
Connect to masterds with the ttIsql utility:

% ttIsql masterds
Copyright (c) 1996-2011, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=masterds";
Connection successful: DSN=masterds;UID=ttuser;
DataStore=/tmp/masterds;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;TypeMode=0;
(Default setting AutoCommit=1)
Command>

Create a table named tab with columns named a, b and c:

Command> CREATE TABLE tab (a NUMBER NOT NULL,
 > b NUMBER,
 > c CHAR(8),
 > PRIMARY KEY (a));

Create a replication scheme called repscheme to replicate the tab table from
masterds to subscriberds.

Command> CREATE REPLICATION repscheme
 > ELEMENT e TABLE tab
 > MASTER masterds
 > SUBSCRIBER subscriberds;

Step 3: Create a table and replication scheme on the subscriber database
Connect to subscriberds and create the same table and replication scheme, using
the same procedure described in Step 2.

Step 4: Start the replication agent on each database
Start the replication agents on masterds and subscriberds:

Command> call ttRepStart;

Exit ttIsql. Use the ttStatus utility to verify that the replication agents are
running for both databases:

% ttStatus
TimesTen status report as of Thu Aug 11 17:05:23 2011

Daemon pid 18373 port 4134 instance ttuser
TimesTen server pid 18381 started on port 4136
--
Data store /tmp/masterds
There are 16 connections to the data store

Configuring a replication scheme with one master and one subscriber

Getting Started 2-7

Shared Memory KEY 0x0201ab43 ID 5242889
PL/SQL Memory KEY 0x0301ab43 ID 5275658 Address 0x10000000
Type PID Context Connection Name ConnID
Process 20564 0x081338c0 masterds 1
Replication 20676 0x08996738 LOGFORCE 5
Replication 20676 0x089b69a0 REPHOLD 2
Replication 20676 0x08a11a58 FAILOVER 3
Replication 20676 0x08a7cd70 REPLISTENER 4
Replication 20676 0x08ad7e28 TRANSMITTER 6
Subdaemon 18379 0x080a11f0 Manager 2032
Subdaemon 18379 0x080fe258 Rollback 2033
Subdaemon 18379 0x081cb818 Checkpoint 2036
Subdaemon 18379 0x081e6940 Log Marker 2035
Subdaemon 18379 0x08261e70 Deadlock Detector 2038
Subdaemon 18379 0xae100470 AsyncMV 2040
Subdaemon 18379 0xae11b508 HistGC 2041
Subdaemon 18379 0xae300470 Aging 2039
Subdaemon 18379 0xae500470 Flusher 2034
Subdaemon 18379 0xae55b738 Monitor 2037
Replication policy : Manual
Replication agent is running.
Cache Agent policy : Manual
PL/SQL enabled.
--
Data store /tmp/subscriberds
There are 16 connections to the data store
Shared Memory KEY 0x0201ab41 ID 5177351
PL/SQL Memory KEY 0x0301ab41 ID 5210120 Address 0x10000000
Type PID Context Connection Name ConnID
Process 20594 0x081338f8 subscriberds 1
Replication 20691 0x0893c550 LOGFORCE 5
Replication 20691 0x089b6978 REPHOLD 2
Replication 20691 0x08a11a30 FAILOVER 3
Replication 20691 0x08a6cae8 REPLISTENER 4
Replication 20691 0x08ad7ba8 RECEIVER 6
Subdaemon 18376 0x080b1450 Manager 2032
Subdaemon 18376 0x0810e4a8 Rollback 2033
Subdaemon 18376 0x081cb8b0 Flusher 2034
Subdaemon 18376 0x08246de0 Monitor 2035
Subdaemon 18376 0x082a20a8 Deadlock Detector 2036
Subdaemon 18376 0x082fd370 Checkpoint 2037
Subdaemon 18376 0x08358638 Aging 2038
Subdaemon 18376 0x083b3900 Log Marker 2040
Subdaemon 18376 0x083ce998 AsyncMV 2039
Subdaemon 18376 0x08469e90 HistGC 2041
Replication policy : Manual
Replication agent is running.
Cache Agent policy : Manual
PL/SQL enabled.

Step 5: Insert data into the table on the master database
Use ttIsql to connect to the master database and insert some rows into the tab
table:

% ttIsql masterds
Command> INSERT INTO tab VALUES (1, 22, 'Hello');
1 row inserted.
Command> INSERT INTO tab VALUES (3, 86, 'World');
1 row inserted.

Configuring a replication scheme with one master and one subscriber

2-8 Oracle TimesTen In-Memory Database Replication Guide

Open a second command prompt window for the subscriber. Connect to the
subscriber database and check the contents of the tab table:

% ttIsql subscriberds
Command> SELECT * FROM tab;
< 1, 22, Hello>
< 3, 86, World>
2 rows found.

Figure 2–3 shows that the rows that are inserted into masterds are replicated to
subscriberds.

Figure 2–3 Replicating changes to the subscriber database

Step 6: Drop the replication scheme and table
After you have completed your replication tests, stop the replication agents on both
masterds and subscriberds:

Command> CALL ttRepStop;

To remove the tab table and repscheme replication scheme from the master and
subscriber databases, enter these statements on each database:

Command> DROP REPLICATION repscheme;
Command> DROP TABLE tab;

masterds database subscriberds database

tab tab

masterds
replication

agent

subscriberds
replication

agent

Subscriber Data Store

insert into repl.tab values (1, 22, 'Hello');
insert into repl.tab values (3, 86, 'World');

1 22 Hello
3 86 World

1 22 Hello
3 86 World

3

Defining an Active Standby Pair Replication Scheme 3-1

3Defining an Active Standby Pair Replication
Scheme

The following sections describe how to design a highly available system and define
replication schemes:

■ Restrictions on active standby pairs

■ Defining the DSNs for the databases

■ Defining an active standby pair replication scheme

■ Identifying the databases in the active standby pair

■ Using a return service

■ Setting STORE attributes

■ Configuring network operations

■ Using automatic client failover for an active standby pair

■ Including or excluding database objects from replication

■ Materialized views in an active standby pair

■ Replicating sequences in an active standby pair

To reduce the amount of bandwidth required for replication, see "Compressing
replicated traffic" on page 3-11.

Restrictions on active standby pairs
When you are planning an active standby pair, keep in mind the following restrictions:

■ You can specify at most 127 subscriber databases.

■ Each master and subscriber database must be on a different node to ensure high
availability.

■ The active database and the standby database should be on the same LAN.

■ The clock skew between the active node and the standby node cannot exceed 250
milliseconds.

■ For the initial set-up, you can create a standby database only by duplicating the
active database with the ttRepAdmin -duplicate utility or the
ttRepDuplicateEx C function.

Defining the DSNs for the databases

3-2 Oracle TimesTen In-Memory Database Replication Guide

■ Read-only subscribers can be created only by duplicating the standby database. If
the standby database is unavailable, then the read-only subscribers can be created
by duplicating the active database. See "Duplicating a database" on page 4-2.

■ After failover, the new standby database can only be recovered from the active
database by duplicating the active database unless return twosafe replication is
used between the active and the standby databases. If return twosafe replication is
used, the automated master catch-up feature may be used instead. See "Automatic
catch-up of a failed master database" on page 11-3.

■ Writes on replicated tables are not allowed on the standby database and the
subscriber databases. However, operations on sequences and XLA bookmarks are
allowed on the standby database and the subscriber databases. Reads are also
allowed.

■ Replication from the standby database to the read-only subscribers occurs
asynchronously.

■ ALTER ACTIVE STANDBY PAIR statements can be executed only on the active
database. If ALTER ACTIVE STANDBY PAIR is executed on the active database,
then the standby database must be regenerated by duplicating the active database.
All subscribers must also be regenerated from the standby database. See
"Duplicating a database" on page 4-2.

■ You cannot replicate a temporary database.

■ You cannot replicate tables with compressed columns.

Defining the DSNs for the databases
Before you define the active standby pair, define the DSNs for the active, standby and
read-only subscriber databases. On UNIX, create an odbc.ini file. On Windows, use
the ODBC Administrator to name the databases and set connection attributes. See
"Step 1: Create the DSNs for the master and the subscriber databases" on page 2-2 for
an example.

Each database "name" specified in a replication scheme must match the prefix of the
database file name without the path given for the DataStore data store attribute in
the DSN definition for the database. To avoid confusion, use the same name for both
the DataStore and Data Source Name data store attributes in each DSN
definition. Values for DataStore are case-sensitive. If the database path is
directory/subdirectory/foo.ds0, then foo is the database name that you
should use.

Defining an active standby pair replication scheme
Use the CREATE ACTIVE STANDBY PAIR SQL statement to create an active standby
pair replication scheme. The complete syntax for the CREATE ACTIVE STANDBY
PAIR statement is provided in the Oracle TimesTen In-Memory Database SQL Reference.

You must have the ADMIN privilege to use the CREATE ACTIVE STANDBY PAIR
statement and to perform other replication operations. Only the instance administrator
can duplicate databases.

Table 3–1 shows the components of an active standby pair replication scheme and
identifies the parameters associated with the topics in this chapter.

Table requirements and restrictions for active standby pairs

Defining an Active Standby Pair Replication Scheme 3-3

Identifying the databases in the active standby pair
Use the full database name described in "Defining the DSNs for the databases" on
page 3-2. The first database name designates the active database. The second database
name designates the standby database. Read-only subscriber databases are indicated
by the SUBSCRIBER clause.

You can also specify the hosts where the databases reside by using an IP address or a
literal host name surrounded by double quotes.

The active database and the standby database should be on separate hosts to achieve a
highly available system. Read-only subscribers can be either local or remote. A remote
subscriber provides protection from site-specific disasters.

Provide a host ID as part of FullDatabaseName:

DatabaseName [ON Host]

Host can be either an IP address or a literal host name. Use the value returned by the
hostname operating system command. It is good practice to surround a host name
with double quotes. For example:

CREATE ACTIVE STANDBY PAIR
 repdb1_1122 ON "host1",
 repdb2_1122 ON "host2";

Table requirements and restrictions for active standby pairs
Tables that are replicated in an active standby pair must have one of the following:

■ A primary key

■ A unique index over non-nullable columns

Replication uses the primary key or unique index to identify each row in the replicated
table. Replication always selects the first usable index that turns up in a sequential
check of the table's index array. If there is no primary key, replication selects the first

Table 3–1 Components of an active standby pair replication scheme

Component See...

CREATE ACTIVE STANDBY PAIR
FullDatabaseName, FullDatabaseName

"Identifying the databases in the
active standby pair" on page 3-3

[ReturnServiceAttribute] "Using a return service" on
page 3-4

[SUBSCRIBER FullDatabaseName [,...]] "Identifying the databases in the
active standby pair" on page 3-3

[STORE FullDatabaseName [StoreAttribute
[...]]]

"Setting STORE attributes" on
page 3-6

[NetworkOperation [...]] "Configuring network operations"
on page 3-12

[{INCLUDE|EXCLUDE}

 {TABLE [[Owner.]TableName[,...]]|

 CACHE GROUP
[[Owner.]CacheGroupName[,...]|

 SEQUENCE [[Owner.]SequenceName[,...]]}

[,...]]

"Including or excluding database
objects from replication" on
page 3-13

Using a return service

3-4 Oracle TimesTen In-Memory Database Replication Guide

unique index without NULL columns it encounters. The selected index on the
replicated table in the active database must also exist on its counterpart table in the
standby database.

Replicated tables have these data type restrictions:

■ VARCHAR2, NVARCHAR2, VARBINARY and TT_VARCHAR columns in replicated
tables are limited to a size of 4 megabytes. For a VARCHAR2 column, the maximum
length when using character length semantics depends on the number of bytes
each character occupies when using a particular database character set. For
example, if the character set requires four bytes for each character, the maximum
possible length is one million characters. For an NVARCHAR2 column, which
requires two bytes for each character, the maximum length when using character
length semantics is two million characters.

■ Columns with the BLOB data type in replicated tables are limited to a size of 16
megabytes. Columns with the CLOB or NCLOB data type in replicated tables are
limited to a size of 4 megabytes.

■ A primary key column cannot have a LOB data type.

You cannot replicate tables with compressed columns.

Using a return service
You can configure your replication scheme with a return service to ensure a higher
level of confidence that your replicated data is consistent on the active and standby
databases. See "Copying updates between databases" on page 1-2. This section
describes how to configure and manage the return receipt and return twosafe services.
NO RETURN (asynchronous replication) is the default and provides the fastest
performance.

The following sections describe the following return service clauses:

■ RETURN RECEIPT

■ RETURN RECEIPT BY REQUEST

■ RETURN TWOSAFE

■ RETURN TWOSAFE BY REQUEST

■ NO RETURN

RETURN RECEIPT
TimesTen provides an optional return receipt service to loosely couple or synchronize
your application with the replication mechanism.

You can specify the RETURN RECEIPT clause to enable the return receipt service for
the standby database. With return receipt enabled, when your application commits a
transaction for an element on the active database, the application remains blocked
until the standby acknowledges receipt of the transaction update.

If the standby is unable to acknowledge receipt of the transaction within a
configurable timeout period, your application receives a tt_ErrRepReturnFailed

Note: The keys on replicated tables are transmitted in each update
record to the subscribers. Smaller keys are transmitted more
efficiently.

Using a return service

Defining an Active Standby Pair Replication Scheme 3-5

(8170) warning on its commit request. See "Setting the return service timeout period"
on page 3-8 for more information on the return service timeout period.

You can use the ttRepXactStatus procedure to check on the status of a return
receipt transaction. See "Checking the status of return service transactions" on
page 12-15 for details.

You can also configure the replication agent to disable the return receipt service after a
specific number of timeouts. See "Setting the return service timeout period" on
page 3-8 for details.

RETURN RECEIPT BY REQUEST
RETURN RECEIPT enables notification of receipt for all transactions. You can use the
RETURN RECEIPT BY REQUEST clause to enable receipt notification only for specific
transactions identified by your application.

If you specify RETURN RECEIPT BY REQUEST, you must use the ttRepSyncSet
built-in procedure to enable the return receipt service for a transaction. The call to
enable the return receipt service must be part of the transaction (autocommit must be
off).

If the standby database is unable to acknowledge receipt of the transaction update
within a configurable timeout period, the application receives a tt_
ErrRepReturnFailed (8170) warning on its commit request. See "Setting the return
service timeout period" on page 3-8 for more information on the return service timeout
period.

You can use ttRepSyncGet to check if a return service is enabled and obtain the
timeout value. For example:

Command> CALL ttRepSyncGet();
< 01, 45, 1>
1 row found.

RETURN TWOSAFE
TimesTen provides a return twosafe service to fully synchronize your application with
the replication mechanism. The return twosafe service ensures that each replicated
transaction is committed on the standby database before it is committed on the active
database. If replication is unable to verify the transaction has been committed on the
standby, it returns notification of the error. Upon receiving an error, the application
can either take a unique action or fall back on preconfigured actions, depending on the
type of failure.

When replication is configured with RETURN TWOSAFE, you must disable autocommit
mode.

A transaction that contains operations that are replicated with RETURN TWOSAFE
cannot have a PassThrough setting greater than 0. If PassThrough is greater than 0,
an error is returned and the transaction must be rolled back.

If the standby is unable to acknowledge commit of the transaction update within a
configurable timeout period, the application receives a tt_ErrRepReturnFailed
(8170) warning on its commit request. See "Setting the return service timeout period"
on page 3-8 for more information on the return service timeout period.

Setting STORE attributes

3-6 Oracle TimesTen In-Memory Database Replication Guide

RETURN TWOSAFE BY REQUEST
RETURN TWOSAFE enables notification of commit on the standby database for all
transactions. You can use the RETURN TWOSAFE BY REQUEST clause to enable
notification of a commit on the standby only for specific transactions identified by
your application.

A transaction that contains operations that are replicated with RETURN TWOSAFE
cannot have a PassThrough setting greater than 0. If PassThrough is greater than 0,
an error is returned and the transaction must be rolled back.

If you specify RETURN TWOSAFE BY REQUEST for a standby database, you must use
the ttRepSyncSet built-in procedure to enable the return twosafe service for a
transaction. The call to enable the return twosafe service must be part of the
transaction (autocommit must be off).

If the standby is unable to acknowledge commit of the transaction within the timeout
period, the application receives a tt_ErrRepReturnFailed (8170) warning on its
commit request. The application can then chose how to handle the timeout, in the
same manner as described for "RETURN TWOSAFE" on page 3-5.

The ALTER TABLE statement cannot be used to alter a replicated table that is part of a
RETURN TWOSAFE BY REQUEST transaction. If DDLCommitBehavior=0 (the
default), the ALTER TABLE operation succeeds because a commit is performed before
the ALTER TABLE operation, resulting in the ALTER TABLE operation executing in a
new transaction which is not part of the RETURN TWOSAFE BY REQUEST transaction.
If DDLCommitBehavior=1, the ALTER TABLE operation results in error 8051.

See "Setting the return service timeout period" on page 3-8 for more information on
setting the return service timeout period.

You can use ttRepSyncGet to check if a return service is enabled and obtain the
timeout value. For example:

Command> CALL ttRepSyncGet();
< 01, 45, 1>
1 row found.

NO RETURN
You can use the NO RETURN clause to explicitly disable either the return receipt or
return twosafe service, depending on which one you have enabled. NO RETURN is the
default condition.

Setting STORE attributes
Table 3–2 lists the optional STORE attributes for the CREATE ACTIVE STANDBY
PAIR statement.

Table 3–2 STORE attribute descriptions

STORE attribute Description

DISABLE RETURN
{SUBSCRIBER|ALL}
NumFailures

Set the return service policy so that return service blocking is
disabled after the number of timeouts specified by
NumFailures.

See "Establishing return service failure/recovery policies" on
page 3-9.

Setting STORE attributes

Defining an Active Standby Pair Replication Scheme 3-7

RETURN SERVICES
{ON|OFF} WHEN
[REPLICATION] STOPPED

Set return services on or off when replication is disabled.

See "Establishing return service failure/recovery policies" on
page 3-9.

RESUME RETURN
Milliseconds

If DISABLE RETURN has disabled return service blocking, this
attribute sets the policy for re-enabling the return service.

See "Establishing return service failure/recovery policies" on
page 3-9.

RETURN WAIT TIME
Seconds

Specifies the number of seconds to wait for return service
acknowledgement. A value of 0 means that there is no waiting.
The default value is 10 seconds.

The application can override this timeout setting by using the
returnWait parameter in the ttRepSyncSet built-in
procedure.

See "Setting the return service timeout period" on page 3-8.

DURABLE COMMIT
{ON|OFF}

Overrides the DurableCommits general connection attribute
setting. DURABLE COMMIT ON enables durable commits
regardless of whether the replication agent is running or
stopped. It also enables durable commits when the
ttRepStateSave built-in procedure has marked the standby
database as failed.

See "DURABLE COMMIT" on page 3-10.

LOCAL COMMIT ACTION
{NO ACTION|COMMIT}

Specifies the default action to be taken for a return service
transaction in the event of a timeout. The options are:

NO ACTION - On timeout, the commit function returns to the
application, leaving the transaction in the same state it was in
when it entered the commit call, with the exception that the
application is not able to update any replicated tables. The
application can reissue the commit. This is the default.

COMMIT- On timeout, the commit function attempts to perform a
commit to end the transaction locally. No more operations are
possible on the same transaction.

This default setting can be overridden for specific transactions
by using the localAction parameter in the ttRepSyncSet
procedure.

See "LOCAL COMMIT ACTION" on page 3-10.

COMPRESS TRAFFIC
{ON|OFF}

Compresses replicated traffic to reduce the amount of network
bandwidth used.

See "Compressing replicated traffic" on page 3-11.

PORT PortNumber Sets the port number used by a database to listen for updates
from another database.

In an active standby pair, the standby database listens for
updates from the active database. Read-only subscribers listen
for updates from the standby database.

If no PORT attribute is specified, the TimesTen daemon
dynamically selects the port. While static port assignment is
allowed by TimesTen, dynamic port allocation is recommended.

See "Port assignments" on page 3-11.

TIMEOUT Seconds Set the maximum number of seconds the replication agent waits
for a response from the database.

Table 3–2 (Cont.) STORE attribute descriptions

STORE attribute Description

Setting STORE attributes

3-8 Oracle TimesTen In-Memory Database Replication Guide

The rest of this section includes these topics:

■ Setting the return service timeout period

■ Compressing replicated traffic

■ Port assignments

■ Setting the log failure threshold

Setting the return service timeout period
If a replication scheme is configured with one of the return services described in
"Using a return service" on page 3-4, a timeout occurs if the standby database is unable
to send an acknowledgement back to the active within the time period specified by
RETURN WAIT TIME. If the standby database is unable to acknowledge the
transaction update from the active database within the timeout period, the application
receives an errRepReturnFailed warning on its commit request.

The default return service timeout period is 10 seconds. You can specify a different
return service timeout period by:

■ Specifying the RETURN WAIT TIME in the CREATE ACTIVE STANDBY PAIR
statement or ALTER ACTIVE STANDBY PAIR statement. A RETURN WAIT TIME
of 0 indicates no waiting.

■ Specifying a different return service timeout period programmatically by calling
the ttRepSyncSet procedure with a new value for the returnWait parameter.
Once set, the timeout period applies to all subsequent return service transactions
until you either reset the timeout period or terminate the application session.

A return service may time out because of a replication failure or because replication is
so far behind that the return service transaction times out before it is replicated.
However, unless there is a simultaneous replication failure, failure to obtain a return
service confirmation from the standby does not necessarily mean the transaction has
not been or will not be replicated.

You can respond to return service timeouts by:

■ Disabling return service blocking manually

■ Establishing return service failure/recovery policies

Disabling return service blocking manually
You may want respond if replication is stopped or return service timeout failures
begin to adversely impact the performance of your replicated system. Your "tolerance
threshold" for return service timeouts may depend on the historical frequency of
timeouts and the performance/availability equation for your particular application,
both of which should be factored into your response to the problem.

When using the return receipt service, you can manually respond by:

■ Using the ALTER ACTIVE STANDBY PAIR statement to disable return receipt
blocking. See "Making other changes to an active standby pair" on page 6-5.

FAILTHRESHOLD Value Sets the log failure threshold.

See "Setting the log failure threshold" on page 3-11.

Table 3–2 (Cont.) STORE attribute descriptions

STORE attribute Description

Setting STORE attributes

Defining an Active Standby Pair Replication Scheme 3-9

■ Calling the ttDurableCommit built-in procedure to durably commit transactions
on the active database that you can no longer verify as being received by the
standby

If you decide to disable return receipt blocking, your decision to re-enable it depends
on your confidence level that the return receipt transaction is no longer likely to time
out.

Establishing return service failure/recovery policies
An alternative to manually responding to return service timeout failures is to establish
return service failure and recovery policies in the replication scheme. These policies
direct the replication agents to detect changes to the replication state and to keep track
of return service timeouts and then automatically respond in a predefined manner.

The following attributes in the CREATE ACTIVE STANDBY PAIR statement set the
failure and recovery policies when using a RETURN RECEIPT or RETURN TWOSAFE
service:

■ RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED

■ DISABLE RETURN

■ RESUME RETURN

■ DURABLE COMMIT

■ LOCAL COMMIT ACTION

The policies set by these attributes are applicable until changed. The replication agent
must be running to enforce these policies, with the exception of DURABLE COMMIT.

RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED The RETURN SERVICES
{ON | OFF} WHEN [REPLICATION] STOPPED attribute determines whether a
return receipt or return twosafe service continues to be enabled or is disabled when
replication is stopped. "Stopped" in this context means that either the active replication
agent is stopped (for example, by ttAdmin -repStop active) or the replication
state of the standby database is set to stop or pause with respect to the active
database (for example, by ttRepAdmin -state stop standby). A failed standby
that has exceeded the specified FAILTHRESHOLD value is set to the failed state, but
is eventually set to the stop state by the master replication agent.

RETURN SERVICES OFF WHEN REPLICATION STOPPED disables the return service
when replication is stopped and is the default when using the RETURN RECEIPT
service. RETURN SERVICES ON WHEN REPLICATION STOPPED allows the return
service to continue to be enabled when replication is stopped and is the default when
using the RETURN TWOSAFE service.

DISABLE RETURN When a DISABLE RETURN value is set, the database keeps track of
the number of return receipt or return twosafe transactions that have exceeded the
timeout period set by RETURN WAIT TIME. If the number of timeouts exceeds the
maximum value set by DISABLE RETURN, the application reverts to a default

Note: A standby database may become unavailable for a period of
time that exceeds the timeout period specified by RETURN WAIT
TIME but still be considered by the master replication agent to be in
the start state. Failure policies related to timeouts are set by the
DISABLE RETURN attribute.

Setting STORE attributes

3-10 Oracle TimesTen In-Memory Database Replication Guide

replication cycle in which it no longer waits for the standby to acknowledge the
replicated updates.

Specifying SUBSCRIBER is the same as specifying ALL. Both settings refer to the
standby database.

The DISABLE RETURN failure policy is only enabled when the replication agent is
running. If DISABLE RETURN is specified without RESUME RETURN, the return
services remain off until the replication agent for the database has been restarted. You
can cancel this failure policy by stopping the replication agent and specifying
DISABLE RETURN with a zero value for NumFailures. The count of timeouts to
trigger the failure policy is reset either when you restart the replication agent, when
you set the DISABLE RETURN value to 0, or when return service blocking is
re-enabled by RESUME RETURN.

RESUME RETURN When we say return service blocking is "disabled," we mean that the
applications on the master database no longer block execution while waiting to receive
acknowledgements from the subscribers that they received or committed the
replicated updates. Note, however, that the master still listens for an
acknowledgement of each batch of replicated updates from the standby database.

You can establish a return service recovery policy by setting the RESUME RETURN
attribute and specifying a resume latency value. When this attribute is set and return
service blocking has been disabled for the standby database, the return receipt or
return twosafe service is re-enabled when the commit-to-acknowledge time for a
transaction falls below the value set by RESUME RETURN. The commit-to-acknowledge
time is the latency between when the application issues a commit and when the master
receives acknowledgement from the subscriber.

The RESUME RETURN policy is enabled only when the replication agent is running.
You can cancel a return receipt resume policy by stopping the replication agent and
then using ALTER ACTIVE STANDBY PAIR to set RESUME RETURN to zero.

DURABLE COMMIT You can set the DURABLE COMMIT attribute to specify the durable
commit policy for applications that have return service blocking disabled by DISABLE
RETURN. When DURABLE COMMIT is set to ON, it overrides the DurableCommits
general connection attribute on the master database and forces durable commits for
those transactions that have had return service blocking disabled.

When DURABLE COMMITS are ON, durable commits are issued when return service
blocking is disabled regardless of whether the replication agent is running or stopped.
They are also issued for an active standby pair in which the ttRepStateSave built-in
procedure has marked the standby database as failed.

LOCAL COMMIT ACTION When you are using the return twosafe service, you can specify
how the master replication agent responds to timeouts by setting LOCAL COMMIT
ACTION. You can override the setting for specific transactions by calling the
localAction parameter in the ttRepSyncSet procedure.

The possible actions upon receiving a timeout during replication of a twosafe
transaction are:

■ COMMIT - On timeout, the commit function attempts to perform a commit to end
the transaction locally. No more operations are possible on the same transaction.

■ NO ACTION - On timeout, the commit function returns to the application, leaving
the transaction in the same state it was in when it entered the commit call, with the
exception that the application is not able to update any replicated tables. The
application can reissue the commit. This is the default.

Setting STORE attributes

Defining an Active Standby Pair Replication Scheme 3-11

Compressing replicated traffic
If you are replicating over a low-bandwidth network, or if you are replicating massive
amounts of data, you can set the COMPRESS TRAFFIC attribute to reduce the amount
of bandwidth required for replication. The COMPRESS TRAFFIC attribute compresses
the replicated data from the database specified by the STORE parameter in the CREATE
ACTIVE STANDBY PAIR or ALTER ACTIVE STANDBY PAIR statement. TimesTen
does not compress traffic from other databases.

Though the compression algorithm is optimized for speed, enabling the COMPRESS
TRAFFIC attribute affects replication throughput and latency.

Example 3–1 Compressing traffic from an active database

For example, to compress replicated traffic from active database dsn1 and leave the
replicated traffic from standby database dsn2 uncompressed, the CREATE ACTIVE
STANDBY PAIR statement looks like:

CREATE ACTIVE STANDBY PAIR dsn1 ON "host1", dsn2 ON "host2"
 SUBSCRIBER dsn3 ON "host3"
 STORE dsn1 ON "host1" COMPRESS TRAFFIC ON;

Example 3–2 Compressing traffic from both master databases

To compress the replicated traffic from the dsn1 and dsn2 databases, use:

CREATE ACTIVE STANDBY PAIR dsn1 ON "host1", dsn2 ON "host2"
 SUBSCRIBER dsn3 ON "host3"
STORE dsn1 ON "host1" COMPRESS TRAFFIC ON
STORE dsn2 ON "host2" COMPRESS TRAFFIC ON;

Port assignments
Static port assignment is recommended. If you do not assign a PORT attribute, the
TimesTen daemon dynamically selects the port. When ports are assigned dynamically
in this manner for the replication agents, then the ports of the TimesTen daemons have
to match as well.

You must assign static ports if you want to do online upgrades.

When statically assigning ports, it is important to specify the full host name, DSN and
port in the STORE attribute of the CREATE ACTIVE STANDBY PAIR statement.

Example 3–3 Assigning static ports

CREATE ACTIVE STANDBY PAIR dsn1 ON "host1", dsn2 ON "host2"
 SUBSCRIBER dsn3 ON "host3"
STORE dsn1 ON "host1" PORT 16080
STORE dsn2 ON "host2" PORT 16083
STORE dsn3 ON "host3" PORT 16084;

Setting the log failure threshold
You can establish a threshold value that, when exceeded, sets an unavailable standby
database or a read-only subscriber to the failed state before the available log space is
exhausted.

Set the log threshold by specifying the STORE clause with a FAILTHRESHOLD value in
the CREATE ACTIVE STANDBY PAIR or ALTER ACTIVE STANDBY PAIR
statement. The default threshold value is 0, which means "no limit."

Configuring network operations

3-12 Oracle TimesTen In-Memory Database Replication Guide

If an active database sets the standby database or a read-only subscriber to the failed
state, it drops all of the data for the failed database from its log and transmits a
message to the failed database. If the active replication agent can communicate with
the replication agent of the failed database, then the message is transmitted
immediately. Otherwise, the message is transmitted when the connection is
reestablished.

Any application that connects to the failed database receives a tt_
ErrReplicationInvalid (8025) warning indicating that the database has been
marked failed by a replication peer. Once the database has been informed of its
failed status, its state on the active database is changed from failed to stop.

An application can use the ODBC SQLGetInfo function to check if the database the
application is connected to has been set to the failed state.

For more information about database states, see Table 10–2, " Database states" on
page 10-15.

Configuring network operations
If a replication host has more than one network interface, you may wish to configure
replication to use an interface other than the default interface. Although you must
specify the host name returned by the operating system's hostname command when
you specify the database name, you can configure replication to send or receive traffic
over a different interface using the ROUTE clause.

The syntax of the ROUTE clause is:

ROUTE MASTER FullDatabaseName SUBSCRIBER FullDatabaseName
 {{MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost}
 PRIORITY Priority} [...]

In the context of the ROUTE clause, each master database is a subscriber of the other
master database and each read-only subscriber is a subscriber of both master
databases. This means that the CREATE ACTIVE STANDBY PAIR statement should
include ROUTE clauses in multiples of two to specify a route in both directions. See
Example 3–4.

Example 3–4 Configuring multiple network interfaces

If host host1 is configured with a second interface accessible by the host name
host1fast, and host2 is configured with a second interface at IP address
192.168.1.100, you may specify that the secondary interfaces are used with the
replication scheme.

CREATE ACTIVE STANDBY PAIR dns1, dsn2
ROUTE MASTER dsn1 ON "host1" SUBSCRIBER dsn2 ON "host2"
 MASTERIP "host1fast" PRIORITY 1
 SUBSCRIBERIP "192.168.1.100" PRIORITY 1
ROUTE MASTER dsn2 ON "host2" SUBSCRIBER dsn1 ON "host1"
 MASTERIP "192.168.1.100" PRIORITY 1
 SUBSCRIBERIP "host1fast" PRIORITY 1;

Alternately, on a replication host with more than one interface, you may wish to
configure replication to use one or more interfaces as backups, in case the primary
interface fails or the connection from it to the receiving host is broken. You can use the
ROUTE clause to specify two or more interfaces for each master or subscriber that are
used by replication in order of priority.

Including or excluding database objects from replication

Defining an Active Standby Pair Replication Scheme 3-13

If replication on the master host is unable to bind to the MASTERIP with the highest
priority, it will try to connect using subsequent MASTERIP addresses in order of
priority immediately. However, if the connection to the subscriber fails for any other
reason, replication will try to connect using each of the SUBSCRIBERIP addresses in
order of priority before it tries the MASTERIP address with the next highest priority.

Example 3–5 Configuring network priority

If host host1 is configured with two network interfaces at IP addresses 192.168.1.100
and 192.168.1.101, and host host2 is configured with two interfaces at IP addresses
192.168.1.200 and 192.168.1.201, you may specify that replication use IP addresses
192.168.1.100 and 192.168.200 to transmit and receive traffic first, and to try IP
addresses 192.168.1.101 or 192.168.1.201 if the first connection fails.

CREATE ACTIVE STANDBY PAIR dns1, dns2
ROUTE MASTER dsn1 ON "host1" SUBSCRIBER dsn2 ON "host2"
 MASTERIP "192.168.1.100" PRIORITY 1
 MASTERIP "192.168.1.101" PRIORITY 2
 SUBSCRIBERIP "192.168.1.200" PRIORITY 1
 SUBSCRIBERIP "192.168.1.201" PRIORITY 2;

Using automatic client failover for an active standby pair
Automatic client failover is for use in High Availability scenarios with a TimesTen
active standby pair replication configuration. If failure of the active TimesTen node
results in the original standby node becoming the new active node, then automatic
client failover feature automatically transfers the application connection to the new
active node.

For full details on how to configure and use automatic client failover, see "Using
automatic client failover" in the Oracle TimesTen In-Memory Database Operations Guide.

Including or excluding database objects from replication
An active standby pair replicates an entire database by default. Use the INCLUDE
clause to replicate only the tables, cache groups and sequences that are listed in the
INCLUDE clause. No other database objects will be replicated in an active standby pair
that is defined with an INCLUDE clause. For example, this INCLUDE clause specifies
three tables to be replicated by the active standby pair:

INCLUDE TABLE employees, departments, jobs

You can choose to exclude specific tables, cache groups or sequences from replication
by using the EXCLUDE clause of the CREATE ACTIVE STANDBY PAIR statement. Use
one EXCLUDE clause for each object type. For example:

EXCLUDE TABLE ttuser.tab1, ttuser.tab2
EXCLUDE CACHE GROUP ttuser.cg1, ttuser.cg2
EXCLUDE SEQUENCE ttuser.seq1, ttuser.seq2

Note: Automatic client failover is complementary to Oracle
Clusterware in situations where Oracle Clusterware is used, but the
two features are not dependent on each other. For information about
Oracle Clusterware, you can refer to Chapter 7, "Using Oracle
Clusterware to Manage Active Standby Pairs".

Materialized views in an active standby pair

3-14 Oracle TimesTen In-Memory Database Replication Guide

Materialized views in an active standby pair
When you replicate a database containing a materialized or nonmaterialized view,
only the detail tables associated with the view are replicated. The view itself is not
replicated. A matching view can be defined on the standby database, but it is not
required. If detail tables are replicated, TimesTen automatically updates the
corresponding view. However, TimesTen replication verifies only that the replicated
detail tables have the same structure on both databases. It does not enforce that the
materialized views are the same on each database.

Replicating sequences in an active standby pair
Sequences are replicated unless you exclude them from the active standby pair or
unless they have the CYCLE attribute. See "Including or excluding database objects
from replication" on page 3-13. Replication of sequences is optimized by reserving a
range of sequence numbers on the standby database each time a sequence is updated
on the active database. Reserving a range of sequence numbers reduces the number of
updates to the transaction log. The range of sequence numbers is called a cache.
Sequence updates on the active database are replicated only when they are followed
by or used in replicated transactions.

Consider a sequence named my.sequence with a MINVALUE of 1, an INCREMENT of 1
and the default Cache of 20. The very first time that you reference
my.sequence.NEXTVAL, the current value of the sequence on the active database is
changed to 2, and a new current value of 21 (20+1) is replicated to the standby
database. The next 19 references to my.seq.NEXTVAL on the active database result in
no new current value being replicated, because the current value of 21 on the standby
database is still ahead of the current value on the active database. On the twenty-first
reference to my.seq.NEXTVAL, a new current value of 41 (21+20) is transmitted to the
standby database because the previous current value of 21 on the standby database is
now behind the value of 22 on the active database.

Operations on sequences such as SELECT my.seq.NEXTVAL FROM sys.dual,
while incrementing the sequence value, are not replicated until they are followed by
transactions on replicated tables. A side effect of this behavior is that these sequence
updates are not purged from the log until followed by transactions on replicated
tables. This causes ttRepSubscriberWait and ttRepAdmin -wait to fail when
only these sequence updates are present at the end of the log.

Note: Sequences with the CYCLE attribute cannot be replicated.

4

Administering an Active Standby Pair Without Cache Groups 4-1

4Administering an Active Standby Pair
Without Cache Groups

This chapter describes how to administer an active standby pair that does not replicate
cache groups.

For information about administering active standby pairs that replicate cache groups,
see Chapter 5, "Administering an Active Standby Pair with Cache Groups".

For information about managing failover and recovery automatically, see Chapter 7,
"Using Oracle Clusterware to Manage Active Standby Pairs".

This chapter includes the following topics:

■ Overview of master database states

■ Duplicating a database

■ Setting up an active standby pair with no cache groups

■ Recovering from a failure of the active database

■ Recovering from a failure of the standby database

■ Recovering from the failure of a subscriber database

■ Reversing the roles of the active and standby databases

■ Detection of dual active databases

Overview of master database states
This section summarizes the possible states of a master database. These states are
referenced in the tasks described in the rest of the chapter.

The master databases can be in one of the following states:

■ ACTIVE - A database in this state is the active database. Applications can update
its replicated tables.

■ STANDBY - A database in this state is the standby database. Applications can
update only nonreplicated tables in the standby database. Nonreplicated tables are
tables that have been excluded from the replication scheme by using the EXCLUDE
TABLE or EXCLUDE CACHE GROUP clauses of the CREATE ACTIVE STANDBY
PAIR statement.

■ FAILED - A database in this state is a failed master database. No updates can be
replicated to it.

Duplicating a database

4-2 Oracle TimesTen In-Memory Database Replication Guide

■ IDLE - A database in this state has not yet had its role in the active standby pair
assigned. It cannot be updated. Every database comes up in the IDLE state.

■ RECOVERING - When a previously failed master database is synchronizing
updates with the active database, it is in the RECOVERING state.

You can use the ttRepStateGet built-in procedure to discover the state of a master
database.

Duplicating a database
When you set up a replication scheme or administer a recovery, a common task is
duplicating a database. You can use the ttRepAdmin -duplicate utility or the
ttRepDuplicateEx C function to duplicate a database.

 To duplicate a database, these conditions must be fulfilled:

■ The instance administrator performs the duplicate operation.

■ The instance administrator user name must be the same on both instances
involved in the duplication.

■ You must provide the user name and password for a user with the ADMIN
privilege on the source database.

■ The target DSN cannot include client/server attributes.

On the source database, create a user and grant the ADMIN privilege to the user:

CREATE USER ttuser IDENTIFIED BY ttuser;
User created.

GRANT admin TO ttuser;

Assume the user name of the instance administrator is timesten. Logged in as
timesten on the target host, duplicate database dsn1 on host1 to dsn2:

ttRepAdmin -duplicate -from dsn1 -host host1 dsn2

Enter internal UID at the remote datastore with ADMIN privileges: ttuser
Enter password of the internal Uid at the remote datastore:

Enter ttuser when prompted for the password of the internal user at the remote
database.

If you are duplicating an active database that has cache groups, use the -keepCG
option. You must also specify the cache administration user ID and password with the
-cacheUid and -cachePwd options. If you do not provide the cache administration
user password, ttRepAdmin prompts for a password. If the cache administration user
ID is orauser and the password is orapwd, duplicate database dsn1 on host1:

ttRepAdmin -duplicate -from dsn1 -host host1 -keepCG "DSN=dsn2;UID=;PWD="

Enter internal UID at the remote datastore with ADMIN privileges: ttuser
Enter password of the internal Uid at the remote datastore:

Enter ttuser when prompted for the password. ttRepAdmin then prompts for the
cache administration user and password:

Enter cache administrator UID: orauser
Enter cache administrator password:

Enter orapwd when prompted for the cache administration password.

Setting up an active standby pair with no cache groups

Administering an Active Standby Pair Without Cache Groups 4-3

The UID and PWD for dsn2 are specified as null values in the connection string so that
the connection is made as the current OS user, which is the instance administrator.
Only the instance administrator can run ttRepAdmin -duplicate. If dsn2 is
configured with PWDCrypt instead of PWD, then the connection string should be
"DSN=dsn2;UID=;PWDCrypt=".

When you duplicate a standby database with cache groups to a read-only subscriber,
use the -nokeepCG option. In this example, dsn2 is the standby database and sub1 is
the read-only subscriber:

ttRepAdmin -duplicate -from dsn2 -host host2 -nokeepCG "DSN=sub1;UID=;PWD="

The ttRepAdmin utility prompts for values for -uid and -pwd.

If you want to use a specific local or remote network interface over which the database
duplication occurs, you can optionally specify either by providing an alias or the IP
address of the network interface.

You can specify the local and remote network interfaces for the source and target hosts
by using the -localIP and -remoteIP options of ttRepAdmin -duplicate. If
you do not specify one or both network interfaces, TimesTen chooses them.

For more information about the ttRepAdmin utility, see "ttRepAdmin" in Oracle
TimesTen In-Memory Database Reference. For more information about the
ttRepDuplicateEx C function, see "ttRepDuplicateEx" in Oracle TimesTen
In-Memory Database C Developer's Guide.

Setting up an active standby pair with no cache groups
To set up an active standby pair, complete the tasks in this section. See "Configuring
an active standby pair with one subscriber" on page 2-1 for an example.

If you intend to replicate read-only cache groups or asynchronous writethrough
(AWT) cache groups, see Chapter 5, "Administering an Active Standby Pair with
Cache Groups".

Before you create a database, see the information in these sections:

■ "Configuring the network" on page 10-1

■ "Connection attributes for replicated databases" on page 10-6

■ "Managing the transaction log on a replicated database" on page 10-9

1. Create a database. See "Managing TimesTen Databases" in Oracle TimesTen
In-Memory Database Operations Guide.

2. Create the replication scheme using the CREATE ACTIVE STANDBY PAIR
statement. See Chapter 3, "Defining an Active Standby Pair Replication Scheme".

3. Call ttRepStateSet('ACTIVE') on the active database.

4. Start the replication agent. See "Starting and stopping the replication agents" on
page 10-13.

5. Create a user on the active database and grant the ADMIN privilege to the user.

6. Duplicate the active database to the standby database.

7. Start the replication agent on the standby database. See "Starting and stopping the
replication agents" on page 10-13.

8. Wait for the standby database to enter the STANDBY state. Use the
ttRepStateGet procedure to check the state of the standby database.

Recovering from a failure of the active database

4-4 Oracle TimesTen In-Memory Database Replication Guide

9. Duplicate all of the subscribers from the standby database. See "Duplicating a
master database to a subscriber" on page 10-12.

10. Set up the replication agent policy and start the replication agent on each of the
subscriber databases. See "Starting and stopping the replication agents" on
page 10-13.

Recovering from a failure of the active database
This section includes the following topics:

■ Recovering when the standby database is ready

■ Recovering when the standby database is not ready

■ Failing back to the original nodes

Recovering when the standby database is ready
This section describes how to recover the active database when the standby database is
available and synchronized with the active database. It includes the following topics:

■ When replication is return receipt or asynchronous

■ When replication is return twosafe

When replication is return receipt or asynchronous
Complete the following tasks:

1. Stop the replication agent on the failed database if it has not already been stopped.

2. On the standby database, execute ttRepStateSet('ACTIVE'). This changes
the role of the database from STANDBY to ACTIVE.

3. On the new active database, execute ttRepStateSave('FAILED', 'failed_
database','host_name'), where failed_database is the former active
database that failed. This step is necessary for the new active database to replicate
directly to the subscriber databases. During normal operation, only the standby
database replicates to the subscribers.

4. Destroy the failed database.

5. Duplicate the new active database to the new standby database.

6. Set up the replication agent policy and start the replication agent on the new
standby database. See "Starting and stopping the replication agents" on
page 10-13.

The standby database contacts the active database. The active database stops sending
updates to the subscribers. When the standby database is fully synchronized with the
active database, then the standby database enters the STANDBY state and starts
sending updates to the subscribers.

When replication is return twosafe
Complete the following tasks:

Note: You can verify that the standby database has entered the
STANDBY state by using the ttRepStateGet built-in procedure.

Recovering from a failure of the active database

Administering an Active Standby Pair Without Cache Groups 4-5

1. On the standby database, execute ttRepStateSet('ACTIVE'). This changes
the role of the database from STANDBY to ACTIVE.

2. On the new active database, execute ttRepStateSave('FAILED', 'failed_
database','host_name'), where failed_database is the former active
database that failed. This step is necessary for the new active database to replicate
directly to the subscriber databases. During normal operation, only the standby
database replicates to the subscribers.

3. Connect to the failed database. This triggers recovery from the local transaction
logs. If database recovery fails, you must continue from Step 5 of the procedure for
recovering when replication is return receipt or asynchronous. See "When
replication is return receipt or asynchronous" on page 4-4.

4. Verify that the replication agent for the failed database has restarted. If it has not
restarted, then start the replication agent. See "Starting and stopping the
replication agents" on page 10-13.

When the active database determines that it is fully synchronized with the standby
database, then the standby database enters the STANDBY state and starts sending
updates to the subscribers.

Recovering when the standby database is not ready
Consider the following scenarios:

■ The standby database fails. The active database fails before the standby comes
back up or before the standby has been synchronized with the active database.

■ The active database fails. The standby database becomes ACTIVE, and the rest of
the recovery process begins. (See "Recovering from a failure of the active database"
on page 4-4.) The new active database fails before the new standby database is
fully synchronized with it.

In both scenarios, the subscribers may have had more changes applied than the
standby database.

When the active database fails and the standby database has not applied all of the
changes that were last sent from the active database, there are two choices for
recovery:

■ Recover the active database from the local transaction logs.

■ Recover the standby database from the local transaction logs.

The choice depends on which database is available and which is more up to date.

Recover the active database
1. Connect to the failed active database. This triggers recovery from the local

transaction logs.

2. Verify that the replication agent for the failed active database has restarted. If it
has not restarted, then start the replication agent. See "Starting and stopping the
replication agents" on page 10-13.

3. Execute ttRepStateSet('ACTIVE') on the newly recovered database.

Note: You can verify that the standby database has entered the
STANDBY state by using the ttRepStateSet built-in procedure.

Recovering from a failure of the standby database

4-6 Oracle TimesTen In-Memory Database Replication Guide

4. Continue with Step 6 in "Setting up an active standby pair with no cache groups"
on page 4-3.

Recover the standby database
1. Connect to the failed standby database. This triggers recovery from the local

transaction logs.

2. If the replication agent for the standby database has automatically restarted, you
must stop the replication agent. See "Starting and stopping the replication agents"
on page 10-13.

3. Drop the replication configuration using the DROP ACTIVE STANDBY PAIR
statement.

4. Re-create the replication configuration using the CREATE ACTIVE STANDBY
PAIR statement.

5. Execute ttRepStateSet('ACTIVE') on the master database, giving it the
ACTIVE role.

6. Set up the replication agent policy and start the replication agent on the new
standby database. See "Starting and stopping the replication agents" on
page 10-13.

7. Continue from Step 6 in "Setting up an active standby pair with no cache groups"
on page 4-3.

Failing back to the original nodes
After a successful failover, you may wish to fail back so that the active database and
the standby database are on their original nodes. See "Reversing the roles of the active
and standby databases" on page 4-7 for instructions.

Recovering from a failure of the standby database
To recover from a failure of the standby database, complete the following tasks:

1. Detect the standby database failure.

2. If return twosafe service is enabled, the failure of the standby database may
prevent a transaction in progress from being committed on the active database,
resulting in error 8170, "Receipt or commit acknowledgement not returned in the
specified timeout interval". If so, then call the ttRepSyncSet procedure with a
localAction parameter of 2 (COMMIT) and commit the transaction again. For
example:

call ttRepSyncSet(null, null, 2);
commit;

3. Execute ttRepStateSave('FAILED','standby_database','host_
name') on the active database. After this, as long as the standby database is
unavailable, updates to the active database are replicated directly to the subscriber
databases. Subscriber databases may also be duplicated directly from the active.

4. If the replication agent for the standby database has automatically restarted, stop
the replication agent. See "Starting and stopping the replication agents" on
page 10-13.

5. Recover the standby database in one of the following ways:

Reversing the roles of the active and standby databases

Administering an Active Standby Pair Without Cache Groups 4-7

■ Connect to the standby database. This triggers recovery from the local
transaction logs.

■ Duplicate the standby database from the active database.

The amount of time that the standby database has been down and the amount of
transaction logs that need to be applied from the active database determine the
method of recovery that you should use.

6. Set up the replication agent policy and start the replication agent on the new
standby database. See "Starting and stopping the replication agents" on
page 10-13.

The standby database enters the STANDBY state and starts sending updates to the
subscribers after the active database determines that the two master databases have
been synchronized and stops sending updates to the subscribers.

Recovering from the failure of a subscriber database
If a subscriber database fails, then you can recover it by one of the following methods:

■ Connect to the failed subscriber. This triggers recovery from the local transaction
logs. Start the replication agent and let the subscriber catch up.

■ Duplicate the subscriber from the standby database.

If the standby database is down or in recovery, then duplicate the subscriber from the
active database.

After the subscriber database has been recovered, then set up the replication agent
policy and start the replication agent. See "Starting and stopping the replication
agents" on page 10-13.

Reversing the roles of the active and standby databases
To change the role of the active database to standby and vice versa:

1. Pause any applications that are generating updates on the current active database.

2. Execute ttRepSubscriberWait on the active database, with the DSN and host
of the current standby database as input parameters. It must return success
(<00>). This ensures that all updates have been transmitted to the current standby
database.

3. Stop the replication agent on the current active database. See "Starting and
stopping the replication agents" on page 10-13.

4. Execute ttRepDeactivate on the current active database. This puts the database
in the IDLE state.

5. Execute ttRepStateSet('ACTIVE') on the current standby database. This
database now acts as the active database in the active standby pair.

6. Set up the replication agent policy and start the replication agent on the old active
database.

Note: You can verify that the standby database has entered the
STANDBY state by using the ttRepStateGet procedure.

Detection of dual active databases

4-8 Oracle TimesTen In-Memory Database Replication Guide

7. Use the ttRepStateGet procedure to determine when the database's state has
changed from IDLE to STANDBY. The database now acts as the standby database
in the active standby pair.

8. Resume any applications that were paused in Step 1.

Detection of dual active databases
Ordinarily, the designation of the active and standby databases in an active standby
pair is explicitly controlled by the user. However, in some circumstances the user may
not have the ability to modify both the active and standby databases when changing
the role of the standby database to active.

For example, if network communication to the site of an active database is interrupted,
the user may need the standby database at a different site to take over the role of the
active, but cannot stop replication on the current active or change its role manually.
Changing the standby database to active without first stopping replication on the
active leads to a situation where both masters are in the ACTIVE state and accepting
transactions. In such a scenario, TimesTen can automatically negotiate the
active/standby role of the master databases when network communication between
the databases is restored.

If, during the initial handshake between the databases, TimesTen determines that the
master databases in an active standby pair replication scheme are both in the ACTIVE
state, TimesTen performs the following operations automatically:

■ The database which was set to the ACTIVE state most recently is left in the
ACTIVE state and may continue to be connected to and updated by applications.

■ The database which was set to the ACTIVE state least recently is invalidated. All
applications are disconnected.

■ When the invalidated database comes back up, TimesTen determines whether any
transactions have occurred on the database that have not yet been replicated to the
other master database. If such transactions have occurred, they are now trapped,
and the database is left in the IDLE state. The database needs to be duplicated
from the active in order to become a standby. If there are no trapped transactions,
the database is safe to use as a standby database and is automatically set to the
STANDBY state.

5

Administering an Active Standby Pair with Cache Groups 5-1

5Administering an Active Standby Pair with
Cache Groups

You can replicate tables within cache groups as long as they are configured within an
active standby pair.

The following sections describe how to administer an active standby pair that
replicates cache groups:

■ Active standby pairs with cache groups

■ Setting up an active standby pair with a read-only cache group

■ Setting up an active standby pair with an AWT cache group

■ Recovering from a failure of the active database

■ Recovering from a failure of the standby database

■ Recovering from the failure of a subscriber database

■ Reversing the roles of the active and standby databases

■ Detection of dual active databases

■ Using a disaster recovery subscriber in an active standby pair

Active standby pairs with cache groups
An active standby pair that replicates a read-only cache group or an asynchronous
writethrough (AWT) cache group can change the role of the cache group automatically
as part of failover and recovery. This helps ensure high availability of cache instances
with minimal data loss. See "Replicating an AWT cache group" on page 1-12 and
"Replicating a read-only cache group" on page 1-13.

Note: For information about managing failover and recovery
automatically, see Chapter 7, "Using Oracle Clusterware to Manage
Active Standby Pairs".

Note: TimesTen does not support replication of a user managed
cache group if it is defined with either the AUTOREFRESH or
PROPAGATE cache table attributes.

Setting up an active standby pair with a read-only cache group

5-2 Oracle TimesTen In-Memory Database Replication Guide

You can also create a special disaster recovery read-only subscriber when you set up
active standby replication of an AWT cache group. This special subscriber, located at a
remote disaster recovery site, can propagate updates to a second Oracle database, also
located at the disaster recovery site. See "Using a disaster recovery subscriber in an
active standby pair" on page 5-9.

You cannot use an active standby pair to replicate synchronous writethrough (SWT)
cache groups. If you are using an active standby pair to replicated a database with
SWT cache groups, you must either drop or exclude the SWT cache groups.

Setting up an active standby pair with a read-only cache group
This section describes how to set up an active standby pair that replicates cache tables
in a read-only cache group. The active standby pair used as an example in this section
is not a cache grid member.

Before you create a database, see the information in these sections:

■ "Configuring the network" on page 10-1

■ "Connection attributes for replicated databases" on page 10-6

■ "Managing the transaction log on a replicated database" on page 10-9

To set up an active standby pair that replicates a local read-only cache group, complete
the following tasks:

1. Create a cache administration user in the Oracle database. See "Create users in the
Oracle database" in Oracle In-Memory Database Cache User's Guide.

2. Create a database. See "Create a DSN for the TimesTen database" in Oracle
In-Memory Database Cache User's Guide.

3. Set the cache administration user ID and password by calling the
ttCacheUidPwdSet built-in procedure. See "Set the cache administration user
name and password in the TimesTen database" in Oracle In-Memory Database Cache
User's Guide. For example:

Command> call ttCacheUidPwdSet('orauser','orapwd');

4. Start the cache agent on the database. Use the ttCacheStart built-in procedure
or the ttAdmin -cachestart utility.

Command> call ttCacheStart;

5. Use the CREATE CACHE GROUP statement to create the read-only cache group.
For example:

Command> CREATE READONLY CACHE GROUP readcache
 > AUTOREFRESH INTERVAL 5 SECONDS
 > FROM oratt.readtab
 > (keyval NUMBER NOT NULL PRIMARY KEY, str VARCHAR2(32));

6. Ensure that the autorefresh state is set to PAUSED. The autorefresh state is PAUSED
by default after cache group creation. You can verify the autorefresh state by
executing the ttIsql cachegroups command:

Command> cachegroups;

7. Create the replication scheme using the CREATE ACTIVE STANDBY PAIR
statement.

Setting up an active standby pair with a read-only cache group

Administering an Active Standby Pair with Cache Groups 5-3

For example, suppose master1 and master2 are defined as the master
databases. sub1 and sub2 are defined as the subscriber databases. The databases
reside on node1, node2, node3, and node4. The return service is RETURN
RECEIPT. The replication scheme can be specified as follows:

Command> CREATE ACTIVE STANDBY PAIR master1 ON "node1", master2 ON "node2"
 > RETURN RECEIPT
 > SUBSCRIBER sub1 ON "node3", sub2 ON "node4"
 > STORE master1 ON "node1" PORT 21000 TIMEOUT 30
 > STORE master2 ON "node2" PORT 20000 TIMEOUT 30;

8. Set the replication state to ACTIVE by calling the ttRepStateSet built-in
procedure on the active database (master1). For example:

Command> call ttRepStateSet('ACTIVE');

9. Set up the replication agent policy for master1 and start the replication agent. See
"Starting and stopping the replication agents" on page 10-13.

10. Load the cache group by using the LOAD CACHE GROUP statement. This starts the
autorefresh process. For example:

Command> LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

11. As the instance administrator, duplicate the active database (master1) to the
standby database (master2). Use the ttRepAdmin -duplicate utility with the
-keepCG option to preserve the cache group. Alternatively, you can use the
ttRepDuplicateEx C function to duplicate the database. See "Duplicating a
database" on page 4-2. ttRepAdmin prompts for the values of -uid, -pwd,
-cacheuid and -cachepwd.

ttRepAdmin -duplicate -from master1 -host node1 -keepCG "DSN=master2;UID=;PWD="

12. Set up the replication agent policy on master2 and start the replication agent.
See "Starting and stopping the replication agents" on page 10-13.

13. The standby database enters the STANDBY state automatically. Wait for master2
to enter the STANDBY state. Call the ttRepStateGet built-in procedure to check
the state of master2. For example:

Command> call ttRepStateGet;

14. Start the cache agent for master2 using the ttCacheStart built-in procedure or
the ttAdmin -cacheStart utility. For example:

Command> call ttCacheStart;

15. As the instance administrator, duplicate the subscribers (sub1 and sub2) from the
standby database (master2). Use the -noKeepCG command line option with
ttRepAdmin -duplicate to convert the cache tables to normal TimesTen tables
on the subscribers. ttRepAdmin prompts for the values of -uid and -pwd. See
"Duplicating a database" on page 4-2. For example:

ttRepAdmin -duplicate -from master2 -host node2 -nokeepCG "DSN=sub1;UID=;PWD="

16. Set up the replication agent policy on the subscribers and start the replication
agent on each of the subscriber databases. See "Starting and stopping the
replication agents" on page 10-13.

Setting up an active standby pair with an AWT cache group

5-4 Oracle TimesTen In-Memory Database Replication Guide

Setting up an active standby pair with an AWT cache group
For detailed instructions for setting up an active standby pair with a global AWT cache
group, see "Replicating cache tables" in Oracle In-Memory Database Cache User's Guide.
The active standby pair in that section is a cache grid member.

Recovering from a failure of the active database
This section includes the following topics:

■ Recovering when the standby database is ready

■ Recovering when the standby database is not ready

■ Failing back to the original nodes

Recovering when the standby database is ready
This section describes how to recover the active database when the standby database is
available and synchronized with the active database. It includes the following topics:

■ When replication is return receipt or asynchronous

■ When replication is return twosafe

When replication is return receipt or asynchronous
Complete the following tasks:

1. Stop the replication agent on the failed database if it has not already been stopped.

2. On the standby database, execute ttRepStateSet('ACTIVE'). This changes
the role of the database from STANDBY to ACTIVE. If you are replicating a
read-only cache group, this action automatically causes the autorefresh state to
change from PAUSED to ON for this database.

3. On the new active database, execute ttRepStateSave('FAILED', 'failed_
database','host_name'), where failed_database is the former active
database that failed. This step is necessary for the new active database to replicate
directly to the subscriber databases. During normal operation, only the standby
database replicates to the subscribers.

4. Stop the cache agent on the failed database if it is not already stopped.

5. Destroy the failed database.

6. Duplicate the new active database to the new standby database. You can use either
the ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to
duplicate a database. Use the -keepCG -recoveringNode command line
options with ttRepAdmin to preserve the cache group. See "Duplicating a
database" on page 4-2.

7. Set up the replication agent policy on the new standby database and start the
replication agent. See "Starting and stopping the replication agents" on page 10-13.

8. Start the cache agent on the new standby database.

The standby database contacts the active database. The active database stops sending
updates to the subscribers. When the standby database is fully synchronized with the
active database, then the standby database enters the STANDBY state and starts
sending updates to the subscribers.The new standby database takes over processing of
the cache group automatically when it enters the STANDBY state. If you are replicating

Recovering from a failure of the active database

Administering an Active Standby Pair with Cache Groups 5-5

an AWT cache group, the new standby database takes over processing of the cache
group automatically when it enters the STANDBY state.

When replication is return twosafe
Complete the following tasks:

1. On the standby database, execute ttRepStateSet('ACTIVE'). This changes
the role of the database from STANDBY to ACTIVE. If you are replicating a
read-only cache group, this action automatically causes the autorefresh state to
change from PAUSED to ON for this database.

2. On the new active database, execute ttRepStateSave('FAILED', 'failed_
database','host_name'), where failed_database is the former active
database that failed. This step is necessary for the new active database to replicate
directly to the subscriber databases. During normal operation, only the standby
database replicates to the subscribers.

3. Connect to the failed database. This triggers recovery from the local transaction
logs. If database recovery fails, you must continue from Step 5 of the procedure for
recovering when replication is return receipt or asynchronous. See "When
replication is return receipt or asynchronous" on page 5-4. If you are replicating a
read-only cache group, the autorefresh state is automatically set to PAUSED.

4. Verify that the replication agent for the failed database has restarted. If it has not
restarted, then start the replication agent. See "Starting and stopping the
replication agents" on page 10-13.

5. Verify that the cache agent for the failed database has restarted. If it has not
restarted, then start the cache agent.

When the active database determines that it is fully synchronized with the standby
database, then the standby database enters the STANDBY state and starts sending
updates to the subscribers. The new standby database takes over processing of the
cache group automatically when it enters the STANDBY state. If you are replicating an
AWT cache group, the new standby database takes over processing of the cache group
automatically when it enters the STANDBY state.

Recovering when the standby database is not ready
Consider the following scenarios:

■ The standby database fails. The active database fails before the standby comes
back up or before the standby has been synchronized with the active database.

■ The active database fails. The standby database becomes ACTIVE, and the rest of
the recovery process begins. (See "Recovering from a failure of the active database"
on page 5-4.) The new active database fails before the new standby database is
fully synchronized with it.

In both scenarios, the subscribers may have had more changes applied than the
standby database.

Note: You can verify that the standby database has entered the
STANDBY state by using the ttRepStateGet built-in procedure.

Note: You can verify that the standby database has entered the
STANDBY state by using the ttRepStateSet built-in procedure.

Recovering from a failure of the active database

5-6 Oracle TimesTen In-Memory Database Replication Guide

When the active database fails and the standby database has not applied all of the
changes that were last sent from the active database, there are two choices for
recovery:

■ Recover the active master database from the local transaction logs.

■ Recover the standby master database from the local transaction logs.

The choice depends on which database is available and which is more up to date.

Recover the active database
1. Connect to the failed active database. This triggers recovery from the local

transaction logs. If you are replicating a read-only cache group, the autorefresh
state is automatically set to PAUSED.

2. Verify that the replication agent for the failed active database has restarted. If it
has not restarted, then start the replication agent. See "Starting and stopping the
replication agents" on page 10-13.

3. Execute ttRepStateSet('ACTIVE') on the newly recovered database. If you
are replicating a read-only cache group, this action automatically causes the
autorefresh state to change from PAUSED to ON for this database.

4. Verify that the cache agent for the failed database has restarted. If it has not
restarted, then start the cache agent.

5. Duplicate the active database to the standby database. You can use either the
ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to
duplicate a database. Use the -keepCG command line option with ttRepAdmin
to preserve the cache group. "Duplicating a database" on page 4-2.

6. Set up the replication agent policy on the standby database and start the
replication agent. See "Starting and stopping the replication agents" on page 10-13.

7. Wait for the standby database to enter the STANDBY state. Use the
ttRepStateGet procedure to check the state.

8. Start the cache agent for on the standby database using the ttCacheStart
procedure or the ttAdmin -cacheStart utility.

9. Duplicate all of the subscribers from the standby database. See "Duplicating a
master database to a subscriber" on page 10-12. Use the -noKeepCG command line
option with ttRepAdmin in order to convert the cache group to regular TimesTen
tables on the subscribers.

10. Set up the replication agent policy on the subscribers and start the agent on each of
the subscriber databases. See "Starting and stopping the replication agents" on
page 10-13.

Recover the standby database
1. Connect to the failed standby database. This triggers recovery from the local

transaction logs. If you are replicating a read-only cache group, the autorefresh
state is automatically set to PAUSED.

2. If the replication agent for the standby database has automatically restarted, you
must stop the replication agent. See "Starting and stopping the replication agents"
on page 10-13.

3. If the cache agent has automatically restarted, stop the cache agent.

4. Drop the replication configuration using the DROP ACTIVE STANDBY PAIR
statement.

Recovering from a failure of the standby database

Administering an Active Standby Pair with Cache Groups 5-7

5. Drop and re-create all cache groups using the DROP CACHE GROUP and CREATE
CACHE GROUP statements.

6. Re-create the replication configuration using the CREATE ACTIVE STANDBY
PAIR statement.

7. Execute ttRepStateSet('ACTIVE') on the master database, giving it the
ACTIVE role. If you are replicating a read-only cache group, this action
automatically causes the autorefresh state to change from PAUSED to ON for this
database.

8. Set up the replication agent policy and start the replication agent on the new active
database. See "Starting and stopping the replication agents" on page 10-13.

9. Start the cache agent on the new active database.

10. Duplicate the active database to the standby database. You can use either the
ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to
duplicate a database. Use the -keepCG command line option with ttRepAdmin
to preserve the cache group. "Duplicating a database" on page 4-2.

11. Set up the replication agent policy on the standby database and start the
replication agent on the new standby database. See "Starting and stopping the
replication agents" on page 10-13.

12. Wait for the standby database to enter the STANDBY state. Use the
ttRepStateGet procedure to check the state.

13. Start the cache agent for the standby database using the ttCacheStart
procedure or the ttAdmin -cacheStart utility.

14. Duplicate all of the subscribers from the standby database. See "Duplicating a
master database to a subscriber" on page 10-12. Use the -noKeepCG command line
option with ttRepAdmin in order to convert the cache group to regular TimesTen
tables on the subscribers.

15. Set up the replication agent policy on the subscribers and start the agent on each of
the subscriber databases. See "Starting and stopping the replication agents" on
page 10-13.

Failing back to the original nodes
After a successful failover, you may wish to fail back so that the active database and
the standby database are on their original nodes. See "Reversing the roles of the active
and standby databases" on page 5-9 for instructions.

Recovering from a failure of the standby database
To recover from a failure of the standby database, complete the following tasks:

1. Detect the standby database failure.

2. If return twosafe service is enabled, the failure of the standby database may
prevent a transaction in progress from being committed on the active database,
resulting in error 8170, "Receipt or commit acknowledgement not returned in the
specified timeout interval". If so, then call the ttRepSyncSet procedure with a
localAction parameter of 2 (COMMIT) and commit the transaction again. For
example:

call ttRepSyncSet(null, null, 2);
commit;

Recovering from the failure of a subscriber database

5-8 Oracle TimesTen In-Memory Database Replication Guide

3. Execute ttRepStateSave('FAILED','standby_database','host_
name') on the active database. After this, as long as the standby database is
unavailable, updates to the active database are replicated directly to the subscriber
databases. Subscriber databases may also be duplicated directly from the active.

4. If the replication agent for the standby database has automatically restarted, stop
the replication agent. See "Starting and stopping the replication agents" on
page 10-13.

5. If the cache agent has automatically restarted, stop the cache agent.

6. Recover the standby database in one of the following ways:

■ Connect to the standby database. This triggers recovery from the local
transaction logs.

■ Duplicate the standby database from the active database. You can use either
the ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function
to duplicate a database. Use the -keepCG -recoveringNode command
line options with ttRepAdmin to preserve the cache group.See "Duplicating a
database" on page 4-2.

The amount of time that the standby database has been down and the amount of
transaction logs that need to be applied from the active database determine the
method of recovery that you should use.

7. Set up the replication agent policy and start the replication agent on the standby
database. See "Starting and stopping the replication agents" on page 10-13.

8. Start the cache agent.

The standby database enters the STANDBY state and starts sending updates to the
subscribers after the active database determines that the two master databases have
been synchronized and stops sending updates to the subscribers.

Recovering from the failure of a subscriber database
If a subscriber database fails, then you can recover it by one of the following methods:

■ Connect to the failed subscriber. This triggers recovery from the local transaction
logs. Start the replication agent and let the subscriber catch up.

■ Duplicate the subscriber from the standby database. You can use either the
ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to
duplicate a database. Use the -noKeepCG command line option with
ttRepAdmin in order to convert the cache group to normal TimesTen tables on
the subscriber.

If the standby database is down or in recovery, then duplicate the subscriber from the
active database.

After the subscriber database has been recovered, then set up the replication agent
policy and start the replication agent. See "Starting and stopping the replication
agents" on page 10-13.

Note: You can verify that the standby database has entered the
STANDBY state by using the ttRepStateGet procedure.

Using a disaster recovery subscriber in an active standby pair

Administering an Active Standby Pair with Cache Groups 5-9

Reversing the roles of the active and standby databases
To change the role of the active database to standby and vice versa:

1. Pause any applications that are generating updates on the current active database.

2. Execute ttRepSubscriberWait on the active database, with the DSN and host
of the current standby database as input parameters. It must return success
(<00>). This ensures that all updates have been transmitted to the current standby
database.

3. Stop the replication agent on the current active database. See "Starting and
stopping the replication agents" on page 10-13.

4. If global cache groups are not present, stop the cache agent on the current active
database. When global cache groups are present, set the autorefresh state to
PAUSED.

5. Execute ttRepDeactivate on the current active database. This puts the database
in the IDLE state. If you are replicating a read-only cache group, this action
automatically causes the autorefresh state to change from ON to PAUSED for this
database.

6. Execute ttRepStateSet('ACTIVE') on the current standby database. This
database now acts as the active database in the active standby pair. If you are
replicating a read-only cache group, this automatically causes the autorefresh state
to change from PAUSED to ON for this database.

7. Start the replication agent on the former master database.

8. Configure the replication agent policy as needed and start the replication agent on
the former active database. Use the ttRepStateGet procedure to determine
when the database's state has changed from IDLE to STANDBY. The database now
acts as the standby database in the active standby pair.

9. Start the cache agent on the former active database if it is not already running.

10. Resume any applications that were paused in Step 1.

Detection of dual active databases
See "Detection of dual active databases" on page 4-8. There is no difference for active
standby pairs that replicate cache groups.

Using a disaster recovery subscriber in an active standby pair
TimesTen active standby pair replication provides high availability by allowing for
fast switching between databases within a data center. This includes the ability to
automatically change which database propagates changes to an Oracle database using
AWT cache groups. However, for additional high availability across data centers, you
may require the ability to recover from a failure of an entire site, which can include a
failure of both TimesTen master databases in the active standby pair as well as the
Oracle database used for the cache groups.

You can recover from a complete site failure by creating a special disaster recovery
read-only subscriber as part of the active standby pair replication scheme. The standby
database sends updates to cache group tables on the read-only subscriber. This special
subscriber is located at a remote disaster recovery site and can propagate updates to a
second Oracle database, also located at the disaster recovery site. The disaster recovery
subscriber can take over as the active in a new active standby pair at the disaster

Using a disaster recovery subscriber in an active standby pair

5-10 Oracle TimesTen In-Memory Database Replication Guide

recovery site if the primary site suffers a complete failure. Any applications may then
connect to the disaster recovery site and continue operating, with minimal
interruption of service.

Requirements for using a disaster recovery subscriber with an active standby pair
To use a disaster recovery subscriber, you must:

■ Use an active standby pair configuration with AWT cache groups at the primary
site. The active standby pair can also include read-only cache groups in the
replication scheme. The read-only cache groups are converted to regular tables on
the disaster recovery subscriber. The AWT cache group tables remain AWT cache
group tables on the disaster recovery subscriber.

■ Have a continuous WAN connection from the primary site to the disaster recovery
site. This connection should have at least enough bandwidth to guarantee that the
normal volume of transactions can be replicated to the disaster recovery
subscriber at a reasonable pace.

■ Configure an Oracle database at the disaster recovery site to include tables with
the same schema as the database at the primary site. Note that this database is
intended only for capturing the replicated updates from the primary site, and if
any data exists in tables written to by the cache groups when the disaster recovery
subscriber is created, that data is deleted.

■ Have the same cache group administrator user ID and password at both the
primary and the disaster recovery site.

Though it is not absolutely required, you should have a second TimesTen database
configured at the disaster recovery site. This database can take on the role of a standby
database, in the event that the disaster recovery subscriber is promoted to an active
database after the primary site fails.

Rolling out a disaster recovery subscriber
To create a disaster recovery subscriber, follow these steps:

1. Create an active standby pair with AWT cache groups at the primary site. The
active standby pair can also include read-only cache groups. The read-only cache
groups are converted to regular tables when the disaster recovery subscriber is
rolled out.

2. Create the disaster recovery subscriber at the disaster recovery site using the
ttRepAdmin utility with the -duplicate and -initCacheDR options. You
must also specify the cache group administrator and password for the Oracle
database at the disaster recovery site using the -cacheUid and -cachePwd
options.

If your database includes multiple cache groups, you may improve the efficiency
of the duplicate operation by using the -nThreads option to specify the number
of threads that are spawned to flush the cache groups in parallel. Each thread
flushes an entire cache group to Oracle and then moves on to the next cache
group, if any remain to be flushed. If a value is not specified for -nThreads, only
one flushing thread is spawned.

For example, duplicate the standby database mast2, on the system with the host
name primary and the cache user ID system and password manager, to the
disaster recovery subscriber drsub, and using two cache group flushing threads.
ttRepAdmin prompts for the values of -uid, -pwd, -cacheUid and
-cachePwd.

Using a disaster recovery subscriber in an active standby pair

Administering an Active Standby Pair with Cache Groups 5-11

ttRepAdmin -duplicate -from mast2 -host primary -initCacheDR -nThreads 2
"DSN=drsub;UID=;PWD=;"

If you use the ttRepDuplicateEx function in C, you must set the TT_REPDUP_
INITCACHEDR flag in ttRepDuplicateExArg.flags and may optionally
specify a value for ttRepDuplicateExArg.nThreads4InitDR:

int rc;
ttUtilHandle utilHandle;
ttRepDuplicateExArg arg;
memset(&arg, 0, sizeof(arg));
arg.size = sizeof(ttRepDuplicateExArg);
arg.flags = TT_REPDUP_INITCACHEDR;
arg.nThreads4InitDR = 2;
arg.uid="ttuser"
arg.pwd="ttuser"
arg.cacheuid = "system";
arg.cachepwd = "manager";
arg.localHost = "disaster";
rc = ttRepDuplicateEx(utilHandle, "DSN=drsub",
 "mast2", "primary", &arg);

After the subscriber is duplicated, TimesTen automatically configures the
replication scheme that propagates updates from the AWT cache groups to the
Oracle database, truncates the tables in the Oracle database that correspond to the
cache groups in TimesTen, and then flushes all of the data in the cache groups to
the Oracle database.

3. If you wish to set the failure threshold for the disaster recovery subscriber, call the
ttCacheAWTThresholdSet built-in procedure and specify the number of
transaction log files that can accumulate before the disaster recovery subscriber is
considered either dead or too far behind to catch up.

If one or both master databases had a failure threshold configured before the
disaster recovery subscriber was created, then the disaster recovery subscriber
inherits the failure threshold value when it is created with the ttRepAdmin
-duplicate -initCacheDR command. If the master databases have different
failure thresholds, then the higher value is used for the disaster recovery
subscriber.

For more information about the failure threshold, see "Setting the log failure
threshold" on page 3-11.

4. Start the replication agent for the disaster recovery subscriber using the
ttRepStart procedure or the ttAdmin utility with the -repstart option. For
example:

ttAdmin -repstart drsub

Updates are now replicated from the standby database to the disaster recovery
subscriber, which then propagates the updates to the Oracle database at the
disaster recovery site.

Switching over to the disaster recovery site
When the primary site has failed, you can switch over to the disaster recovery site in
one of two ways. If your goal is to minimize risk of data loss at the disaster recovery
site, you may roll out a new active standby pair using the disaster recovery subscriber
as the active database. If the goal is to absolutely minimize the downtime of your
applications, at the risk of data loss if the disaster recovery database later fails, you

Using a disaster recovery subscriber in an active standby pair

5-12 Oracle TimesTen In-Memory Database Replication Guide

may instead choose to drop the replication scheme from the disaster recovery
subscriber and use it as a single non-replicating database. You may deploy an active
standby pair at the disaster recovery site later.

Creating a new active standby pair after switching to the disaster recovery site
1. Any read-only applications may be redirected to the disaster recovery subscriber

immediately. Redirecting applications that make updates to the database must
wait until Step 7.

2. Ensure that all of the recent updates to the cache groups have been propagated to
the Oracle database using the ttRepSubscriberWait procedure or the
ttRepAdmin command with the -wait option.

ttRepSubscriberWait(null, null, '_ORACLE', null, 600);

It must return success (<00>). If ttRepSubscriberWait returns 0x01,
indicating a timeout, investigate to determine why the cache groups are not
finished propagating before continuing to Step 3.

3. Stop the replication agent on the disaster recovery subscriber using the
ttRepStop procedure or the ttAdmin command with the -repstop option. For
example, to stop the replication agent for the subscriber drsub, use:

call ttRepStop;

4. Drop the active standby pair replication scheme on the subscriber using the DROP
ACTIVE STANDBY PAIR statement. For example:

DROP ACTIVE STANDBY PAIR;

5. If there are tables on the disaster recovery subscriber that were converted from
read-only cache group tables on the active database, drop the tables on the disaster
recovery subscriber.

6. Create the read-only cache groups on the disaster recovery subscriber. Ensure that
the autorefresh state is set to PAUSED.

7. Create a new active standby pair replication scheme using the CREATE ACTIVE
STANDBY PAIR statement, specifying the disaster recovery subscriber as the
active database. For example, to create a new active standby pair with the former
subscriber drsub as the active and the new database drstandby as the standby,
and using the return twosafe return service, use:

CREATE ACTIVE STANDBY PAIR drsub, drstandby RETURN TWOSAFE;

8. Set the new active standby database to the ACTIVE state using the
ttRepStateSet procedure. For example, on the database drsub in this example,
execute:

call ttRepStateSet('ACTIVE');

9. Any applications which must write to the TimesTen database may now be
redirected to the new active database.

10. If you are replicating a read-only cache group, load the cache group using the
LOAD CACHE GROUP statement to begin the autorefresh process. You may also
load the cache group if you are replicating an AWT cache group, although it is not
required.

11. Duplicate the active database to the standby database. You can use either the
ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to

Using a disaster recovery subscriber in an active standby pair

Administering an Active Standby Pair with Cache Groups 5-13

duplicate a database. Use the -keepCG command line option with ttRepAdmin
to preserve the cache group. See "Duplicating a database" on page 4-2.

12. Set up the replication agent policy on the standby database and start the
replication agent. See "Starting and stopping the replication agents" on page 10-13.

13. Wait for the standby database to enter the STANDBY state. Use the
ttRepStateGet procedure to check the state.

14. Start the cache agent for the standby database using the ttCacheStart
procedure or the ttAdmin -cacheStart utility.

15. Duplicate all of the subscribers from the standby database. See "Duplicating a
master database to a subscriber" on page 10-12. Use the -noKeepCG command line
option with ttRepAdmin in order to convert the cache group to regular TimesTen
tables on the subscribers.

16. Set up the replication agent policy on the subscribers and start the agent on each of
the subscriber databases. See "Starting and stopping the replication agents" on
page 10-13.

Switching over to a single database
1. Any read-only applications may be redirected to the disaster recovery subscriber

immediately. Redirecting applications that make updates to the database must
wait until Step 5.

2. Stop the replication agent on the disaster recovery subscriber using the
ttRepStop procedure or the ttAdmin command with the -repstop option.
For example, to stop the replication agent for the subscriber drsub, use:

call ttRepStop;

3. Drop the active standby pair replication scheme on the subscriber using the DROP
ACTIVE STANDBY PAIR statement. For example:

DROP ACTIVE STANDBY PAIR;

4. If there are tables on the disaster recovery subscriber that were converted from
read-only cache group tables on the active database, drop the tables on the disaster
recovery subscriber.

5. Create the read-only cache groups on the disaster recovery subscriber.

6. Although there is no longer an active standby pair configured, AWT cache groups
require the replication agent to be started. Start the replication agent on the
database using the ttRepStart procedure or the ttAdmin command with the
-repstart option. For example, to start the replication agent for the database
drsub, use:

call ttRepStart;

7. Any applications which must write to a TimesTen database may now be
redirected to the this database.

Note: You may choose to roll out an active standby pair at the
disaster recovery site at a later time. You may do this by following the
steps in "Creating a new active standby pair after switching to the
disaster recovery site" on page 5-12, starting at Step 2 and skipping
Step 4.

Using a disaster recovery subscriber in an active standby pair

5-14 Oracle TimesTen In-Memory Database Replication Guide

Returning to the original configuration at the primary site
When the primary site is usable again, you may wish to move the working active
standby pair from the disaster recovery site back to the primary site. You can do this
with a minimal interruption of service by reversing the process that was used to create
and switch over to the original disaster recovery site. Follow these steps:

1. Destroy original active database at the primary site, if necessary, using the
ttDestroy utility. For example, to destroy a database called mast1, use:

ttDestroy mast1

2. Create a disaster recovery subscriber at the primary site, following the steps
detailed in "Rolling out a disaster recovery subscriber" on page 5-10. Use the
original active database for the new disaster recovery subscriber.

3. Switch over to the new disaster recovery subscriber at primary site, as detailed in
"Switching over to the disaster recovery site" on page 5-11. Roll out the standby
database as well.

4. Roll out a new disaster recovery subscriber at the disaster recovery site, as detailed
in "Rolling out a disaster recovery subscriber" on page 5-10.

6

Altering an Active Standby Pair 6-1

6Altering an Active Standby Pair

This chapter includes the following sections:

■ Making DDL changes in an active standby pair

■ Making other changes to an active standby pair

Making DDL changes in an active standby pair
You can perform the following tasks in an active standby pair without stopping the
replication agent:

■ Create, alter, or drop a user. These statements are replicated.

■ Grant or revoke privileges from a user. These statements are replicated.

■ Create or drop a view, a materialized view, a PL/SQL function, PL/SQL
procedure, PL/SQL package, or PL/SQL package body. These objects are not
replicated. See "Creating a new PL/SQL object in an existing active standby pair"
on page 6-2 for more information.

■ Add a column to a replicated table or drop a column from a replicated table. The
change is replicated to the table in the standby database.

■ Create or drop a table, including global temporary tables. The CREATE TABLE
and DROP TABLE statements can be replicated to the standby database. The new
table can also be included in the active standby pair.

■ Create or drop a synonym. The CREATE SYNONYM and DROP SYNONYM
statements can be replicated to the standby database.

■ Create or drop an index. The CREATE INDEX and DROP INDEX statements can be
replicated to the standby database.

Use the DDLReplicationLevel and DDLReplicationAction connection
attributes to control what happens when you want to perform these tasks.

DDLReplicationLevel can be set as follows:

■ DDLReplicationLevel=1. CREATE or DROP statements for tables, indexes, or
synonyms are not replicated to the standby database. However, you can add to or
drop columns from a replicated table, and those actions will be replicated to the
standby database.

■ DDLReplicationLevel=2 is the default, which enables replication of creating
and dropping of tables, indexes, and synonyms.

You can set the DDLReplicationLevel attribute by using the ALTER SESSION
statement:

Making DDL changes in an active standby pair

6-2 Oracle TimesTen In-Memory Database Replication Guide

ALTER SESSION SET ddl_replication_level=1;

If you want to include a table in the active standby pair when the table is created, set
the DDLReplicationAction connection attribute to 'INCLUDE'. If you do not want
to include a table in the active standby pair when the table is created, set
DDLReplicationAction='EXCLUDE'. The default is 'INCLUDE'.

You can set the DDLReplicationAction attribute by using the ALTER SESSION
statement:

ALTER SESSION SET ddl_replication_action='EXCLUDE';

To add an existing table to an active standby pair, set DDLReplicationLevel=2 and
use the ALTER ACTIVE STANDBY PAIR INCLUDE TABLE statement. The table
must be empty.

When DDLCommitBehavior=0 (the default), DDL operations are automatically
committed. When RETURN TWOSAFE has been specified, errors and timeouts may
occur as described in "RETURN TWOSAFE" on page 3-5. If a RETURN TWOSAFE
timeout occurs, the DDL transaction is committed locally regardless of the LOCAL
COMMIT ACTION that has been specified.

Creating a new PL/SQL object in an existing active standby pair
To add a new PL/SQL procedure, package, package body or function to an existing
active standby pair, complete these tasks:

1. Create the PL/SQL object on the active database. The CREATE statement is not
replicated to the standby database.

2. Create the PL/SQL object on the standby database.

3. Grant privileges to the new PL/SQL object on the active database. The GRANT
statement is replicated to the standby database.

Restrictions on making DDL changes in an active standby pair
■ CREATE TABLE AS SELECT is not replicated.

■ The CREATE INDEX statement is replicated only when the index is created on an
empty table.

■ These statements cannot be executed on the standby database when
DDLReplicationLevel=2:

– CREATE USER, ALTER USER, DROP USER

– GRANT, REVOKE

– CREATE SYNONYM, DROP SYNONYM

Examples: Making DDL changes in an active standby pair

Example 6–1 Create a table and include it in the active standby pair

On the active database, set DDLReplicationLevel to 2 and
DDLReplicationAction to 'INCLUDE'.

Command > ALTER SESSION SET ddl_replication_level=2;
Session altered.
Command > ALTER SESSION SET ddl_replication_action='INCLUDE';
Session altered.

Making DDL changes in an active standby pair

Altering an Active Standby Pair 6-3

Create a table. The table must have a primary key or index.

Command > CREATE TABLE tabinclude (col1 NUMBER NOT NULL PRIMARY KEY);
Table created.

Insert a row into tabinclude.

Command > INSERT INTO tabinclude VALUES (55);
1 row inserted.

On the standby database, verify that the INSERT statement has been replicated. This
indicates that the tabinclude table has been included in the active standby pair.

Command > SELECT * FROM tabinclude;
< 55 >
1 row found.

Alternatively, use the ttIsql repschemes command to see what tables are included
in the active standby pair.

Example 6–2 Create a table and add it to the active standby pair later

On the active database, set DDLReplicationLevel to 2 and
DDLReplicationAction to 'EXCLUDE'.

Command> ALTER SESSION SET ddl_replication_level=2;
Session altered.
Command> ALTER SESSION SET ddl_replication_action='exclude';
Session altered.

Create a table that does not have a primary key or index. Try to include it in the active
standby pair.

Command> CREATE TABLE newtab (a NUMBER NOT NULL);
Command> ALTER ACTIVE STANDBY PAIR INCLUDE TABLE newtab;
 8000: No primary or unique index on non-nullable column found for replicated
 table TERRY.NEWTAB
The command failed.

Create an index on the table. Include the table in the active standby pair.

Command> CREATE UNIQUE INDEX ixnewtab ON newtab(a);
Command> ALTER ACTIVE STANDBY PAIR INCLUDE TABLE newtab;

Insert a row into the table.

Command> INSERT INTO newtab VALUES (5);
1 row inserted.

On the standby database, verify that the row was inserted.

Command> SELECT * FROM newtab;
< 5 >
1 row found.

This example illustrates that a table does not need a primary key to be part of an active
standby pair.

Example 6–3 CREATE INDEX is replicated

On the active database, set DDLReplicationLevel=2 and
DDLReplicationAction='INCLUDE'.

Making DDL changes in an active standby pair

6-4 Oracle TimesTen In-Memory Database Replication Guide

Command> ALTER SESSION SET ddl_replication_level=2;
Session altered.
Command> ALTER SESSION SET ddl_replication_action='include';
Session altered.

Create a table with a primary key. The table is automatically included in the active
standby pair.

Command> CREATE TABLE tab2 (a NUMBER NOT NULL, b NUMBER NOT NULL,
 > PRIMARY KEY (a));

Create an index on the table.

Command> CREATE UNIQUE INDEX ixtab2 ON tab2 (b);

On the standby database, verify that the CREATE INDEX statement has been
replicated.

Command> indexes;

Indexes on table TERRY.TAB2:
 IXTAB2: unique T-tree index on columns:
 B
 TAB2: unique T-tree index on columns:
 A
 2 indexes found.

Indexes on table TERRY.NEWTAB:
 NEWTAB: unique T-tree index on columns:
 A
 1 index found.

Indexes on table TERRY.TABINCLUDE:
 TABINCLUDE: unique T-tree index on columns:
 A
 1 index found.
4 indexes found on 3 tables.

Example 6–4 CREATE SYNONYM is replicated

On the active database, set DDLReplicationLevel to 2 and
DDLReplicationAction to 'INCLUDE'.

Command > ALTER SESSION SET ddl_replication_level=2;
Session altered.
Command > ALTER SESSION SET ddl_replication_action='INCLUDE';
Session altered.

Create a synonym for tabinclude.

Command> CREATE SYNONYM syntabinclude FOR tabinclude;
Synonym created.

On the standby database, use the ttIsql synonyms command to verify that the
CREATE SYNONYM statement has been replicated.

Command> synonyms;
TERRY.SYNTABINCLUDE
1 synonym found.

Making other changes to an active standby pair

Altering an Active Standby Pair 6-5

Making other changes to an active standby pair
You must stop the replication agent to make these changes to an active standby pair:

■ Include or exclude a sequence

■ Include or exclude a cache group

■ Add or drop a subscriber

■ Change values in the STORE clause

■ Change network operations (ADD ROUTE or DROP ROUTE clause)

To alter an active standby pair according to the preceding list, complete the following
tasks:

1. Stop the replication agent on the active database. See "Starting and stopping the
replication agents" on page 10-13.

2. If the active standby pair includes cache groups, stop the cache agent on the active
database.

3. Use the ALTER ACTIVE STANDBY PAIR statement to make changes to the
replication scheme. See "Examples: Altering an active standby pair" on page 6-6.

4. Start the replication agent on the active database. See "Starting and stopping the
replication agents" on page 10-13.

5. If the active standby pair includes cache groups, start the cache agent on the active
database.

6. Destroy the standby database and the subscribers.

7. Duplicate the active database to the standby database. You can use either the
ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to
duplicate a database. If the active standby pair includes cache groups, use the
-keepCG command line option with ttRepAdmin to preserve the cache group.
See "Duplicating a database" on page 4-2.

8. Set up the replication agent policy on the standby database and start the
replication agent. See "Starting and stopping the replication agents" on page 10-13.

9. Wait for the standby database to enter the STANDBY state. Use the
ttRepStateGet procedure to check the state.

10. If the active standby pair includes cache groups, start the cache agent for the
standby database using the ttCacheStart procedure or the ttAdmin
-cacheStart utility.

11. Duplicate all of the subscribers from the standby database. See "Duplicating a
master database to a subscriber" on page 10-12. If the active standby pair includes
cache groups, use the -noKeepCG command line option with ttRepAdmin in
order to convert the cache group to regular TimesTen tables on the subscribers.
See "Duplicating a database" on page 4-2.

12. Set up the replication agent policy on the subscribers and start the agent on each of
the subscriber databases. See "Starting and stopping the replication agents" on
page 10-13.

Making other changes to an active standby pair

6-6 Oracle TimesTen In-Memory Database Replication Guide

Examples: Altering an active standby pair

Example 6–5 Adding a subscriber to an active standby pair

Add a subscriber database to the active standby pair.

ALTER ACTIVE STANDBY PAIR
 ADD SUBSCRIBER sub1;

Example 6–6 Dropping subscribers from an active standby pair

Drop subscriber databases from the active standby pair.

ALTER ACTIVE STANDBY PAIR
 DROP SUBSCRIBER sub1
 DROP SUBSCRIBER sub2;

Example 6–7 Changing the PORT and TIMEOUT settings for subscribers

Alter the PORT and TIMEOUT settings for subscribers sub1 and sub2.

ALTER ACTIVE STANDBY PAIR
 ALTER STORE sub1 SET PORT 23000 TIMEOUT 180
 ALTER STORE sub2 SET PORT 23000 TIMEOUT 180;

Example 6–8 Adding a cache group to an active standby pair

Add a cache group to the active standby pair.

ALTER ACTIVE STANDBY PAIR
 INCLUDE CACHE GROUP cg0;

7

Using Oracle Clusterware to Manage Active Standby Pairs 7-1

7Using Oracle Clusterware to Manage Active
Standby Pairs

Oracle Clusterware monitors and controls applications to provide high availability.
This chapter describes how to use Oracle Clusterware to manage availability for a
TimesTen active standby pair.

This chapter includes the following topics:

■ Overview

■ The cluster.oracle.ini file

■ Creating and initializing a cluster

■ Using Oracle Clusterware with a TimesTen cache grid

■ Recovering from failures

■ Planned maintenance

■ Monitoring cluster status

Overview
Figure 7–1 shows an active standby pair with one read-only subscriber in the same
local network. The active database, the standby database and the read-only subscriber
are on different nodes. There are two nodes that are not part of the active standby pair
that are also running TimesTen. An application updates the active database. An
application reads from the standby and the subscriber. All of the nodes are connected
to shared storage.

Note: For more information about Oracle Clusterware, see Oracle
Clusterware Administration and Deployment Guide in the Oracle
Database documentation.

Overview

7-2 Oracle TimesTen In-Memory Database Replication Guide

Figure 7–1 Active standby pair with one subscriber

You can use Oracle Clusterware to start, monitor and automatically fail over TimesTen
databases and applications in response to node failures and other events. See "Planned
maintenance" on page 7-25 and "Recovering from failures" on page 7-17 for details.

Oracle Clusterware can be implemented at two levels of availability for TimesTen. The
basic level of availability manages two master nodes and up to 127 read-only
subscriber nodes in the cluster. The active standby pair is defined with local host
names or IP addresses. If both master nodes fail, user intervention is necessary to
migrate the active standby scheme to new hosts. When both master nodes fail, Oracle
Clusterware notifies the user.

The advanced level of availability uses virtual IP addresses for the active, standby and
read-only subscriber databases. Extra nodes can be included in the cluster that are not
part of the initial active standby pair. If a failure occurs, the use of virtual IP addresses
allows one of the extra nodes to take on the role of a failed node automatically.

If your applications connect to TimesTen in a client/server configuration, automatic
client failover enables the client to reconnect automatically to the master database with
the active role after a failure. See "Using automatic client failover for an active standby
pair" on page 3-13 and "TTC_FailoverPortRange" in the Oracle TimesTen In-Memory
Database Reference.

The ttCWAdmin utility is used to administer TimesTen active standby pairs in a
cluster that is managed by Oracle Clusterware. The configuration for each active
standby pair is manually created in an initialization file called cluster.oracle.ini
by default. The information in this file is used to create Oracle Clusterware resources.
Resources are used to manage each TimesTen daemon, database, TimesTen processes,
user applications and virtual IP addresses. For more information about the
ttCWAdmin utility, see "ttCWAdmin" in Oracle TimesTen In-Memory Database Reference.
For more information about the cluster.oracle.ini file, see "The cluster.oracle.ini
file" on page 7-4.

Active standby configurations
Use Oracle Clusterware to manage only these configurations:

Active
database

Standby
database

Read-only
subscriber

Application
updates

Shared
storage

Extra
node 1

Extra
node 2

Application
reads

Application
reads

Overview

Using Oracle Clusterware to Manage Active Standby Pairs 7-3

■ Active standby pair with or without read-only subscribers

■ Active standby pair (with or without read-only subscribers) with AWT cache
groups, read-only cache groups and global cache groups

Required privileges
See "ttCWAdmin" in Oracle TimesTen In-Memory Database Reference for information
about the privileges required to execute ttCWAdmin commands.

Hardware and software requirements
Oracle Clusterware release 11.2.0.2.x is supported with TimesTen active standby pair
replication, beginning with release 11.2.0.2.0. See Oracle Clusterware Administration and
Deployment Guide for network and storage requirements and information about Oracle
Clusterware configuration files.

Oracle Clusterware and TimesTen should be installed in the same location on all
nodes.

The TimesTen instance administrator must belong to the same UNIX primary group as
the Oracle Clusterware installation owner.

Note that the /tmp directory contains essential TimesTen Oracle Clusterware
directories. Their names have the prefix crsTT. Do not delete them.

All hosts should use Network Time Protocol (NTP) or a similar system so that clocks
on the hosts remain within 250 milliseconds of each other.

Restricted commands and SQL statements
When you use Oracle Clusterware with TimesTen, you cannot use these commands
and SQL statements:

■ CREATE ACTIVE STANDBY PAIR, ALTER ACTIVE STANDBY PAIR and DROP
ACTIVE STANDBY PAIR SQL statements

■ The -repStart and -repStop options of the ttAdmin utility

■ The -cacheStart and -cacheStop options of the ttAdmin utility after the
active standby pair has been created

■ The -duplicate option of the ttRepAdmin utility

■ The ttRepStart and ttRepStop built-in procedures

■ Built-in procedures for managing a cache grid when the active standby pair in a
cluster is a member of a grid

In addition, do not call ttDaemonAdmin -stop before calling ttCWAdmin
-shutdown.

The TimesTen integration with Oracle Clusterware accomplishes these operations
with the ttCWAdmin utility and the attributes in the cluster.oracle.ini file.

For more information about the built-ins and utilities, see Oracle TimesTen In-Memory
Database Reference. For more information about the SQL statements, see Oracle
TimesTen In-Memory Database SQL Reference.

The cluster.oracle.ini file

7-4 Oracle TimesTen In-Memory Database Replication Guide

The cluster.oracle.ini file
Create an initialization file called cluster.oracle.ini as a text file. The
information in this file is used to create Oracle Clusterware resources that manage
TimesTen databases, TimesTen processes, user applications and virtual IP addresses.

The ttCWAdmin -create command reads this file for configuration information, so
the location of the text file must be reachable by ttCWAdmin. It is recommended that
you place this file in the daemon home directory on the host for the active database.
However, you can place this file in any directory or shared drive on the same host as
where you will execute the ttCWAdmin -create command.

The default location for this file is in one of the following directories:

■ The install_dir/info directory on UNIX platforms

■ The c:\TimesTen\install_dir\srv\info directory on Windows platforms

If you place this file in another location, identify the path of the location with the
-ttclusterini option.

The entry name in the cluster.oracle.ini file must be the same as an existing
DSN:

■ In the sys.odbc.ini file on UNIX platforms

■ In a system DSN on Windows platforms

For example, [basicDSN] is the entry name in the cluster.oracle.ini file
described in "Configuring basic availability" on page 7-5. [basicDSN] must also be
the DataStore and Data Source Name data store attributes in the sys.odbc.ini
files on each host. For example, the sys.odbc.ini file for the basicDSN DSN on
host1 might be:

[basicDSN]
DataStore=/path1/basicDSN
LogDir=/path1/log
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

The sys.odbc.ini file for basicDSN on host2 can have a different path, but all
other attributes should be the same:

[basicDSN]
DataStore=/path2/basicDSN
LogDir=/path2/log
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

This section includes sample cluster.oracle.ini files for these configurations:

■ Configuring basic availability

■ Configuring advanced availability

■ Including cache groups in the active standby pair

■ Including the active standby pair in a cache grid

Note: All of the attributes that can be used in the
cluster.oracle.ini file are described in Chapter 8, "TimesTen
Configuration Attributes for Oracle Clusterware".

The cluster.oracle.ini file

Using Oracle Clusterware to Manage Active Standby Pairs 7-5

■ Implementing application failover

■ Recovering from permanent failure of both master nodes

■ Using the RepDDL attribute

Configuring basic availability
This example shows an active standby pair with no subscribers. The hosts for the
active database and the standby database are host1 and host2. The list of hosts is
delimited by commas. You can include spaces for readability if desired.

The ttCWAdmin utility is used to administer TimesTen active standby pairs in a
cluster that is managed by Oracle Clusterware.

[basicDSN]
MasterHosts=host1,host2

The following is an example of a cluster.oracle.ini file for an active standby
pair with one subscriber on host3:

[basicSubscriberDSN]
MasterHosts=host1,host2
SubscriberHosts=host3

Configuring advanced availability
In this example, the hosts for the active database and the standby database are host1
and host2. The specified host3 and host4 are extra nodes that can be used for
failover. There are no subscriber nodes. MasterVIP specifies the virtual IP addresses
defined for the master databases. VIPInterface is the name of the public network
adaptor. VIPNetMask defines the netmask of the virtual IP addresses.

[advancedDSN]
MasterHosts=host1,host2,host3,host4
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=eth0
VIPNetMask=255.255.255.0

This example has one subscriber on host4. There is one extra node that can be used
for failing over the master databases and one extra node that can be used for the
subscriber database. MasterVIP and SubscriberVIP specify the virtual IP
addresses defined for the master and subscriber databases. VIPInterface is the
name of the public network adaptor. VIPNetMask defines the netmask of the virtual
IP addresses.

[advancedSubscriberDSN]
MasterHosts=host1,host2,host3
SubscriberHosts=host4,host5
MasterVIP=192.168.1.1, 192.168.1.2
SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0

Ensure that the extra nodes:

■ Have TimesTen installed

■ Have the direct-linked application installed if this is part of the configuration. See
"Implementing application failover" on page 7-6.

The cluster.oracle.ini file

7-6 Oracle TimesTen In-Memory Database Replication Guide

Including cache groups in the active standby pair
If the active standby pair replicates one or more AWT or read-only cache groups, set
the CacheConnect attribute to y.

This example specifies an active standby pair with one subscriber in an advanced
availability configuration. The active standby pair replicates one or more cache
groups.

[advancedCacheDSN]
MasterHosts=host1,host2,host3
SubscriberHosts=host4, host5
MasterVIP=192.168.1.1, 192.168.1.2
SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0
CacheConnect=y

Including the active standby pair in a cache grid
If the active standby pair is a member of a cache grid, assign port numbers for the
active and standby databases by setting the GridPort attribute.

This example specifies an active standby pair with no subscribers in an advanced
availability configuration. The active standby pair is a member of a cache grid.

[advancedGridDSN]
MasterHosts=host1,host2,host3
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=eth0
VIPNetMask=255.255.255.0
CacheConnect=y
GridPort=16101, 16102

For more information about using Oracle Clusterware with a cache grid, see "Using
Oracle Clusterware with a TimesTen cache grid" on page 7-15.

Implementing application failover
TimesTen integration with Oracle Clusterware can facilitate the failover of a TimesTen
application that is linked to any of the databases in the active standby pair. Both
direct-linked and client/server applications that are on the same host as Oracle
Clusterware and TimesTen can be managed.

The required attributes in the cluster.oracle.ini file for failing over a TimesTen
application are:

■ AppName - Name of the application to be managed by Oracle Clusterware

■ AppStartCmd - Command line for starting the application

■ AppStopCmd - Command line for stopping the application

■ AppCheckCmd - Command line for executing an application that checks the status
of the application specified by AppName

■ AppType - Determines the database to which the application is linked. The
possible values are Active, Standby, DualMaster, Subscriber (all) and
Subscriber[index].

Optionally, you can also set AppFailureThreshold, DatabaseFailoverDelay,
and AppScriptTimeout. These attributes have default values.

The cluster.oracle.ini file

Using Oracle Clusterware to Manage Active Standby Pairs 7-7

The TimesTen application monitor process uses the user-supplied script or program
specified by AppCheckCmd to monitor the application. The script that checks the
status of the application must be written to return 0 for success and a nonzero number
for failure. When Oracle Clusterware detects a nonzero value, it takes action to recover
the failed application.

This example shows advanced availability configured for an active standby pair with
with no subscribers. The reader application is an application that queries the data in
the standby database. AppStartCmd, AppStopCmd and AppCheckCmd can include
arguments such as start, stop and check commands. On UNIX, do not use quotes
in the values for AppStartCmd, AppStopCmd and AppCheckCmd.

[appDSN]
MasterHosts=host1,host2,host3,host4
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=eth0
VIPNetMask=255.255.255.0
AppName=reader
AppType=Standby
AppStartCmd=/mycluster/reader/app_start.sh start
AppStopCmd=/mycluster/reader/app_stop.sh stop
AppCheckCmd=/mycluster/reader/app_check.sh check

AppStartCmd, AppStopCmd and AppCheckCmd can include arguments. For
example, the following is a valid cluster.oracle.ini file on Windows that
demonstrates configuration for an application that is directly linked to the active
database. The script for starting, stopping, and checking the application takes
arguments for the DSN and the action to take (-start, -stop and -check).

Note the double quotes for the specified paths in AppStartCmd, AppStopCmd and
AppCheckCmd. The quotes are needed because there are spaces in the path. Enclose
only the path in quotes. Do not enclose the DSN or the action in quotes.

[appWinDSN]
MasterHosts=host1,host2,host3,host4
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=Local Area Connection
VIPNetMask=255.255.255.0
AppName=UpdateApp
AppType=Active
AppStartCmd="C:\Program Files\UserApps\UpdateApp.exe" -dsn myDSN -start
AppStopCmd= "C:\Program Files\UserApps\UpdateApp.exe" -dsn myDSN -stop
AppCheckCmd="C:\Program Files\UserApps\UpdateApp.exe" -dsn myDSN -check

You can configure failover for more than one application. Use AppName to name the
application and provide values for AppType, AppStartCmd, AppStopCmd and
AppCheckCmd immediately following the AppName attribute. You can include blank
lines for readability. For example:

[app2DSN]
MasterHosts=host1,host2,host3,host4
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=eth0
VIPNetMask=255.255.255.0

AppName=reader
AppType=Standby
AppStartCmd=/mycluster/reader/app_start.sh
AppStopCmd=/mycluster/reader/app_stop.sh
AppCheckCmd=/mycluster/reader/app_check.sh

The cluster.oracle.ini file

7-8 Oracle TimesTen In-Memory Database Replication Guide

AppName=update
AppType=Active
AppStartCmd=/mycluster/update/app2_start.sh
AppStopCmd=/mycluster/update/app2_stop.sh
AppCheckCmd=/mycluster/update/app2_check.sh

The application is considered available if it has been running for 15 times the value of
AppScriptTimeout attribute. The default value of AppScriptTimeout is 60
seconds, so the application’s "uptime threshold" is 15 minutes by default. If the
application fails after running for more than 15 minutes, it will be restarted on the
same host. If the application fails within 15 minutes of being started, the failure is
considered a failure to start properly, and the application will be restarted on another
host. If you want to modify the application’s uptime threshold after the application
has started, use the crs_register -update command. See Oracle Clusterware
Administration and Deployment Guide for information about the crs_register
-update command.

If you set AppType to DualMaster, the application starts on both the active host and
the standby host.The failure of the application on the active host causes the active
database and all other applications on the host to fail over to the standby host. You can
configure the failure interval, the number of restart attempts and the uptime threshold
by setting the AppFailureInterval, AppRestartAttempts and
AppUptimeThreshold attributes. These attributes have default values. For example:

[appDualDSN]
MasterHosts=host1,host2,host3,host4
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=eth0
VIPNetMask=255.255.255.0
AppName=update
AppType=DualMaster
AppStartCmd=/mycluster/update/app2_start.sh
AppStopCmd=/mycluster/update/app2_stop.sh
AppCheckCmd=/mycluster/update/app2_check.sh
AppRestartAttempts=5
AppUptimeThreshold=300
AppFailureInterval=30

Recovering from permanent failure of both master nodes
If both master nodes fail and then come back up, Oracle Clusterware can
automatically recover the master databases. Automatic recovery of temporary dual
failure requires:

■ RETURN TWOSAFE is not specified for the active standby pair.

■ AutoRecover is set to y.

■ RepBackupDir specifies a directory on shared storage.

■ RepBackupPeriod is set to a value greater than 0.

If both master nodes fail permanently, Oracle Clusterware can automatically recover
the master databases to two new nodes if:

■ Advanced availability is configured (virtual IP addresses and at least four hosts).

■ The active standby pair does not replicate cache groups.

■ A cache grid is not configured.

■ RETURN TWOSAFE is not specified.

The cluster.oracle.ini file

Using Oracle Clusterware to Manage Active Standby Pairs 7-9

■ AutoRecover is set to y.

■ RepBackupDir specifies a directory on shared storage.

■ RepBackupPeriod must be set to a value greater than 0.

TimesTen first performs a full backup of the active database and then performs
incremental backups. You can specify the optional attribute RepFullBackupCycle
to manage when TimesTen performs subsequent full backup. By default, TimesTen
performs a full backup after every five incremental backups.

If RepBackupDir and RepBackupPeriod are configured for backups, TimesTen
performs backups for any master database that becomes active. It does not delete
backups that were performed for a database that used to be active and has become the
standby unless the database becomes active again. Ensure that the shared storage has
enough space for two complete database backups. ttCWAdmin -restore
automatically chooses the correct backup files.

Incremental backups increase the amount of log records in the transaction log files.
Ensure that the values of RepBackupPeriod and RepFullBackupCycle are small
enough to prevent a large amount of log records in the transaction log file.

This example shows attribute settings for automatic recovery.

[autorecoveryDSN]
MasterHosts=host1,host2,host3,host4
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=eth0
VIPNetMask=255.255.255.0
AutoRecover=y
RepBackupDir=/shared_drive/dsbackup
RepBackupPeriod=3600

If you have cache groups in the active standby pair or prefer to recover manually from
failure of both master hosts, ensure that AutoRecover is set to n (the default). Manual
recovery requires:

■ RepBackupDir specifies a directory on shared storage

■ RepBackupPeriod must be set to a value greater than 0

This example shows attribute settings for manual recovery. The default value for
AutoRecover is n, so it is not included in the file.

[manrecoveryDSN]
MasterHosts=host1,host2,host3
MasterVIP=192.168.1.1, 192.168.1.2
VIPInterface=eth0
VIPNetMask=255.255.255.0
RepBackupDir=/shared_drive/dsbackup
RepBackupPeriod=3600

Using the RepDDL attribute
The RepDDL attribute represents the SQL statement that creates the active standby
pair. The RepDDL attribute is optional. You can use it to exclude tables, cache groups
and sequences from the active standby pair.

If you include RepDDL in the cluster.oracle.ini file, do not specify
ReturnServiceAttribute, MasterStoreAttribute or
SubscriberStoreAttribute in the cluster.oracle.ini file. Include those
replication settings in the RepDDL attribute.

The cluster.oracle.ini file

7-10 Oracle TimesTen In-Memory Database Replication Guide

When you specify a value for RepDDL, use the <DSN> macro for the database file name
prefix. Use the <MASTERHOST[1]> and <MASTERHOST[2]> macros to specify the
master host names. TimesTen substitutes the correct values from the MasterHosts or
MasterVIP attributes, depending on whether your configuration uses virtual IP
addresses. Similarly, use the <SUBSCRIBERHOST[n]> macro to specify subscriber
host names, where n is a number from 1 to the total number of SubscriberHosts
attribute values or 1 to the total number of SubscriberVIP attribute values if virtual
IP addresses are used.

Use the RepDDL attribute to exclude tables, cache groups and sequences from the
active standby pair:

[excludeDSN]
MasterHosts=host1,host2,host3,host4
SubscriberHosts=host5,host6
MasterVIP=192.168.1.1, 192.168.1.2
SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0
RepDDL=CREATE ACTIVE STANDBY PAIR \
<DSN> ON <MASTERHOST[1]>, <DSN> ON <MASTERHOST[2]>
SUBSCRIBER <DSN> ON <SUBSCRIBERHOST[1]>\
EXCLUDE TABLE pat.salaries, \
EXCLUDE CACHE GROUP terry.salupdate, \
EXCLUDE SEQUENCE ttuser.empcount

The replication agent transmitter obtains route information as follows, in order of
priority:

1. From the ROUTE clause in the RepDDL setting, if a ROUTE clause is specified. Do
not specify a ROUTE clause if you are configuring advanced availability.

2. From Oracle Clusterware, which provides the private host names and public host
names of the local and remote hosts as well as the remote daemon port number.
The private host name is preferred over the public host name. The replication
agent transmitter cannot connect to the IPC socket, it attempts to connect to the
remote daemon, using information that Oracle Clusterware maintains about the
replication scheme.

3. From the active and standby hosts. If they fail, then the replication agent chooses
the connection method based on host name.

This is an example of specifying the ROUTE clause in RepDDL:

[routeDSN]
MasterHosts=host1,host2,host3,host4
RepDDL=CREATE ACTIVE STANDBY PAIR \
<DSN> ON <MASTERHOST[1]>, <DSN> ON <MASTERHOST[2]>\
ROUTE MASTER <DSN> ON <MASTERHOST[1]> SUBSCRIBER <DSN> ON <MASTERHOST[2]>\
MASTERIP "192.168.1.2" PRIORITY 1\
SUBSCRIBERIP "192.168.1.3" PRIORITY 1\
MASTERIP "10.0.0.1" PRIORITY 2\
SUBSCRIBERIP "10.0.0.2" PRIORITY 2\
MASTERIP "140.87.11.203" PRIORITY 3\
SUBSCRIBERIP "140.87.11.204" PRIORITY 3\
ROUTE MASTER <DSN> ON <MASTERHOST[2]> SUBSCRIBER <DSN> ON <MASTERHOST[1]>\
MASTERIP "192.168.1.3" PRIORITY 1\
SUBSCRIBERIP "192.168.1.2" PRIORITY 1\
MASTERIP "10.0.0.2" PRIORITY 2\
SUBSCRIBERIP "10.0.0.1" PRIORITY 2\
MASTERIP "140.87.11.204" PRIORITY 3\

Creating and initializing a cluster

Using Oracle Clusterware to Manage Active Standby Pairs 7-11

SUBSCRIBERIP "140.87.11.203" PRIORITY 3\

Creating and initializing a cluster
To create and initialize a cluster, perform these tasks:

■ Install Oracle Clusterware

■ Install TimesTen on each host

■ Register the TimesTen cluster information

■ Start the TimesTen cluster agent

■ Create and populate a TimesTen database on one host

■ Create sys.odbc.ini files on other hosts

■ Create a cluster.oracle.ini file

■ Create the virtual IP addresses (optional)

■ Create an active standby pair replication scheme

■ Start the active standby pair

■ Load cache groups

If you plan to have more than one active standby pair in the cluster, see "Including
more than one active standby pair in a cluster" on page 7-14.

If you want to configure an Oracle database as a remote disaster recovery subscriber,
see "Configuring an Oracle database as a disaster recovery subscriber" on page 7-14.

If you want to set up a read-only subscriber that is not managed by Oracle
Clusterware, see "Configuring a read-only subscriber that is not managed by Oracle
Clusterware" on page 7-15.

Install Oracle Clusterware
Install Oracle Clusterware. By default, the installation occurs on all hosts concurrently.
See Oracle Clusterware installation documentation for your platform.

Oracle Clusterware starts automatically after successful installation.

Install TimesTen on each host
Install TimesTen in the same location on each host in the cluster, including extra hosts.
The instance name must be the same on each host. The user name of the instance
administrator must be the same on all hosts. The TimesTen instance administrator
must belong to the same UNIX primary group as the Oracle Clusterware installation
owner.

On UNIX platforms, the installer prompts you for values for:

■ The TCP/IP port number associated with the TimesTen cluster agent. The port
number can be different on each host. If you do not provide a port number,
TimesTen uses the default TimesTen port.

■ The Oracle Clusterware location. The location must be the same on each host.

■ The hosts included in the cluster, including spare hosts, with host names
separated by commas. This list must be the same on each host.

Creating and initializing a cluster

7-12 Oracle TimesTen In-Memory Database Replication Guide

The installer uses these values to create the ttcrsagent.options file on UNIX
platforms. See "TimesTen Installation" in Oracle TimesTen In-Memory Database
Installation Guide for details. You can also use ttmodinstall -crs to create the file
after installation. Use the -record and -batch options for setup.sh to perform
identical installations on additional hosts if desired.

On Windows, execute ttmodinstall -crs on each node after installation to create
the ttcrsagent.options file.

For more information about ttmodinstall, see "ttmodinstall" in Oracle TimesTen
In-Memory Database Reference.

Register the TimesTen cluster information
TimesTen cluster information is stored in the Oracle Cluster Registry (OCR). As the
root user on UNIX platforms, or as the instance administrator on Windows, enter this
command:

ttCWAdmin -ocrConfig

As long as Oracle Clusterware and TimesTen are installed on the hosts, this step never
needs to be repeated.

Start the TimesTen cluster agent
Start the TimesTen cluster agent by executing the ttCWAdmin -init command on
one of the hosts. For example:

ttCWAdmin -init

This command starts the TimesTen cluster agent (ttCRSAgent) and the TimesTen
daemon monitor (ttCRSDaemon). There is one TimesTen cluster agent and one
TimesTen daemon monitor for the TimesTen installation. When the TimesTen cluster
agent has started, Oracle Clusterware begins monitoring the TimesTen daemon and
will restart it if it fails.

Create and populate a TimesTen database on one host
Create a database on the host where you intend the active database to reside. The DSN
must be the same as the database file name.

Create schema objects such as tables, AWT cache groups and read-only cache groups.
Do not load the cache groups.

Create sys.odbc.ini files on other hosts
On all hosts that will be in the cluster, create sys.odbc.ini files. The DataStore
attribute and the Data Source Name must be the same as the entry name for the
cluster.oracle.ini file. See "The cluster.oracle.ini file" on page 7-4 for
information about the contents of the sys.odbc.ini files.

Note: You must stop the TimesTen cluster agent on the local host
before you execute a ttDaemonAdmin -stop command. Otherwise
the cluster agent will restart the daemon.

Creating and initializing a cluster

Using Oracle Clusterware to Manage Active Standby Pairs 7-13

Create a cluster.oracle.ini file
Create a cluster.oracle.ini file as a text file. See "The cluster.oracle.ini file" on
page 7-4 for details about its contents and acceptable locations for the file.

Create the virtual IP addresses (optional)
For advanced availability, execute the ttCWAdmin -createVIPs command on any
host in the cluster. On UNIX, you must execute this command as the root user. For
example:

ttCWAdmin -createVIPs -dsn myDSN

Create an active standby pair replication scheme
Create an active standby pair replication scheme by executing the ttCWAdmin
-create command on any host.

For example:

ttCWAdmin -create -dsn myDSN

This command prompts for an encryption pass phrase that the user will not need
again. The command also prompts for the user ID and password for an internal user
with the ADMIN privilege if it does not find this information in the sys.odbc.ini
file. This internal user will be used to create the active standby pair.

If the CacheConnect Clusterware attribute is enabled, the command prompts for the
user password for the Oracle database. The Oracle password is used to set the
autorefresh states for cache groups. See "CacheConnect" on page 8-16 for more details
on this attribute.

Start the active standby pair
Start the active standby pair replication scheme by executing the ttCWAdmin -start
command on any host. For example:

ttCWAdmin -start -dsn myDSN

This command starts the following processes for the active standby pair:

■ ttCRSMaster

■ ttCRSActiveService

■ ttCRSsubservice

■ Monitor for application AppName

Load cache groups
If the active standby pair includes cache groups, use the LOAD CACHE GROUP
statement to load the cache group tables from the Oracle tables.

Note: The cluster.oracle.ini file contains the configuration
needed to perform the ttCWAdmin -create command and so must
reachable by the ttCWAdmin executable. See "The cluster.oracle.ini
file" on page 7-4 for details about acceptable locations for the
cluster.oracle.ini file.

Creating and initializing a cluster

7-14 Oracle TimesTen In-Memory Database Replication Guide

Including more than one active standby pair in a cluster
If you want to use Oracle Clusterware to manage more than one active standby pair in
a cluster, include additional configuration in the cluster.oracle.ini file. Oracle
Clusterware can only manage more than one active standby pair in a cluster if all
TimesTen databases are a part of the same TimesTen instance on a single host.

For example, the following cluster.oracle.ini file contains configuration
information for two active standby pair replication schemes on the same host:

[advancedSubscriberDSN]
MasterHosts=host1,host2,host3
SubscriberHosts=host4, host5
MasterVIP=192.168.1.1, 192.168.1.2
SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0

[advSub2DSN]
MasterHosts=host1,host2,host3
SubscriberHosts=host4, host5
MasterVIP=192.168.1.4, 192.168.1.5
SubscriberVIP=192.168.1.6
VIPInterface=eth0
VIPNetMask=255.255.255.0

Perform these tasks for additional replication schemes:

1. Create and populate the databases.

2. Create the virtual IP addresses. Use the ttCWAdmin -createVIPs command.

3. Create the active standby pair replication scheme. Use the ttCWAdmin -create
command.

4. Start the active standby pair. Use the ttCWAdmin -start command.

Configuring an Oracle database as a disaster recovery subscriber
You can create an active standby pair on the primary site with an Oracle database as a
remote disaster recovery subscriber. See "Using a disaster recovery subscriber in an
active standby pair" on page 5-9. Oracle Clusterware manages the active standby pair
but does not manage the disaster recovery subscriber. The user must perform a
switchover if the primary site fails.

To use Oracle Clusterware to manage an active standby pair that has a remote disaster
recovery subscriber, perform these tasks:

1. Use the RepDDL or RemoteSubscriberHosts Clusterware attribute to provide
information about the remote disaster recovery subscriber.For example:

[advancedDRsubDSN]
MasterHosts=host1,host2,host3
SubscriberHosts=host4, host5
RemoteSubscriberHosts=host6
MasterVIP=192.168.1.1, 192.168.1.2

Note: For details on configuration attributes in the
cluster.oracle.ini file, see Chapter 8, "TimesTen Configuration
Attributes for Oracle Clusterware".

Using Oracle Clusterware with a TimesTen cache grid

Using Oracle Clusterware to Manage Active Standby Pairs 7-15

SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0
CacheConnect=y

2. Use ttCWAdmin -create to create the active standby pair replication scheme on
the primary site. This does not create the disaster recovery subscriber.

3. Use ttCWAdmin -start to start the active standby pair replication scheme.

4. Load the cache groups that are replicated by the active standby pair.

5. Set up the disaster recovery subscriber using the procedure in "Rolling out a
disaster recovery subscriber" on page 5-10.

Configuring a read-only subscriber that is not managed by Oracle Clusterware
You can include a read-only TimesTen subscriber database that is not managed by
Oracle Clusterware. Perform these tasks:

1. Include the RemoteSubscriberHosts Clusterware attribute in the
cluster.oracle.ini file.For example:

[advancedROsubDSN]
MasterHosts=host1,host2,host3
RemoteSubscriberHosts=host6
MasterVIP=192.168.1.1, 192.168.1.2
SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0

2. Use ttCWAdmin -create to create the active standby pair replication scheme on
the primary site.

3. Use ttCWAdmin -start to start the active standby pair replication scheme. This
does not create the read-only subscriber.

4. Use the ttRepStateGet procedure to verify that the state of the standby
database is STANDBY.

5. On the subscriber host, use ttRepAdmin -duplicate option to duplicate the
standby database to the read-only subscriber. See "Duplicating a database" on
page 4-2.

6. Start the replication agent on the subscriber host.

To add a read-only subscriber to an existing configuration, see "Adding a read-only
subscriber not managed by Oracle Clusterware" on page 7-28.

To rebuild a read-only subscriber, see "Rebuilding a read-only subscriber not managed
by Oracle Clusterware" on page 7-29.

Using Oracle Clusterware with a TimesTen cache grid
You can use the TimesTen implementation of Oracle Clusterware to manage a cache
grid when each grid member is an active standby pair. TimesTen does not support
using Oracle Clusterware to manage standalone grid members.

This section includes:

■ Creating and initializing a cluster of cache grid members

■ Failure and recovery for active standby pair grid members

Using Oracle Clusterware with a TimesTen cache grid

7-16 Oracle TimesTen In-Memory Database Replication Guide

■ Making schema changes to active standby pairs in a grid

Creating and initializing a cluster of cache grid members
See "Install TimesTen on each host" on page 7-11 for installation requirements. In
addition, each grid member must have a DSN that is unique within the cache grid.

Perform the tasks described in "Creating and initializing a cluster" on page 7-11 for
each grid member. Include the GridPort Clusterware attribute in the
cluster.oracle.ini file as described in "Including the active standby pair in a
cache grid" on page 7-6. Ensure that the specified port numbers are not in use.

The ttCWAdmin -start command automatically attaches a grid member to the
cache grid attach. The ttCWAdmin -stop command automatically detaches a grid
member from the cache grid.

Failure and recovery for active standby pair grid members
If both nodes of an active standby pair grid member fail, then the grid member fails.
Oracle Clusterware evicts the failed grid member from the grid automatically.
However, when a cache grid is configured, any further automatic recovery after a dual
failure, whether temporary or permanent, is not possible. In this case, you can only
recover manually. For details, see "Manual recovery of both nodes of an active standby
pair grid member" on page 7-22.

Making schema changes to active standby pairs in a grid
You can add, drop or change a cache group while the active database is attached to the
grid.

Use the ttCWAdmin -beginAlterSchema command to make these schema
changes. This command stops replication but allows the active database to remain
attached to the grid. The ttCWAdmin -endAlterSchema command duplicates the
changes to the standby database, registers the altered replication scheme and starts
replication.

To add a table and include it in the active standby pair, see "Making DDL changes in
an active standby pair" on page 6-1. See the same section for information about
dropping a replicated table.

Add a cache group
Perform these steps on the active database of each active standby pair grid member.

1. Enable the addition of the cache group to the active standby pair.

ttCWAdmin -beginAlterSchema advancedGridDSN

2. Create the cache group.

3. If the cache group is a read-only cache group, alter the active standby pair to
include the cache group.

ALTER ACTIVE STANDBY PAIR INCLUDE CACHE GROUP samplecachegroup;

4. Duplicate the change to the standby database.

ttCWAdmin -endAlterSchema advancedGridDSN

You can load the cache group at any time after you create the cache group.

Recovering from failures

Using Oracle Clusterware to Manage Active Standby Pairs 7-17

Drop a cache group
Perform these steps to drop a cache group.

1. Unload the cache group in all members of the cache grid.

CALL ttOptSetFlag('GlobalProcessing', 1);
UNLOAD CACHE GROUP samplecachegroup;

2. On the active database of an active standby pair grid member, enable dropping
the cache group.

ttCWAdmin -beginAlterSchema advancedGridDSN

3. If the cache group is a read-only cache group, alter the active standby pair to
exclude the cache group.

ALTER ACTIVE STANDBY PAIR EXCLUDE CACHE GROUP samplecachegroup;

4. If the cache group is a read-only cache group, set the autorefresh state to PAUSED.

ALTER CACHE GROUP samplecachegroup SET AUTOREFRESH STATE PAUSED;

5. Drop the cache group.

DROP CACHE GROUP samplecachegroup;

6. If the cache group was a read-only cache group, run the TimesTen_install_
dir/oraclescripts/cacheCleanUp.sql SQL*Plus script as the cache
administration user on the Oracle database to drop the Oracle objects used to
implement autorefresh operations.

7. Duplicate the change to the standby database.

ttCWAdmin -endAlterSchema advancedGridDSN

8. Repeat steps 2 through 7 on the active database of each active standby pair grid
member.

Change an existing cache group
To change an existing cache group, first drop the existing cache group as described in
"Drop a cache group" on page 7-17. Then add the cache group with the desired
changes as described in "Add a cache group" on page 7-16.

Recovering from failures
Oracle Clusterware can recover automatically from many kinds of failures. The
following sections describe several failure scenarios and how Oracle Clusterware
manages the failures.

■ How TimesTen performs recovery when Oracle Clusterware is configured

■ When an active database or its host fails

■ When a standby database or its host fails

■ When read-only subscribers or their hosts fail

■ When failures occur on both master nodes

■ When more than two master hosts fail

■ Performing a forced switchover after failure of the active database or host

Recovering from failures

7-18 Oracle TimesTen In-Memory Database Replication Guide

How TimesTen performs recovery when Oracle Clusterware is configured
The TimesTen database monitor (ttCRSmaster process) performs recovery. It
attempts to connect to the failed database without using the forceconnect option. If
the connection fails with error 994 (Data store connection terminated), the
database monitor tries to connect 10 times. If the connection fails with error 707
(Attempt to connect to a data store that has been manually
unloaded from RAM), the database monitor changes the RAM policy and tries to
connect again. If the database monitor cannot connect, it returns connection failure.

If the database monitor can connect to the database, then it performs these tasks:

■ It queries the CHECKSUM column in the TTREP.REPLICATIONS replication table.

■ If the value in the CHECKSUM column matches the checksum stored in the Oracle
Cluster Registry, then the database monitor verifies the role of the database. If the
role is 'ACTIVE', then recovery is complete.

If the role is not 'ACTIVE', then the database monitor queries the replication
Commit Ticket Number (CTN) in the local database and the CTN in the active
database to find out whether there are transactions that have not been replicated.
If all transactions have been replicated, then recovery is complete.

■ If the checksum does not match or if some transactions have not been replicated,
then the database monitor performs a duplicate operation from the remote
database to re-create the local database.

If the database monitor fails to connect with the database because of error 8110 or 8111
(master catchup required or in progress), then it uses the forceconnect=1 option to
connect and starts master catchup. Recovery is complete when master catchup has
been completed. If master catchup fails with error 8112 (Operation not
permitted), then the database monitor performs a duplicate operation from the
remote database. For more information about master catchup, see "Automatic catch-up
of a failed master database" on page 11-3.

If the connection fails because of other errors, then the database monitor tries to
perform a duplicate operation from the remote database.

The duplicate operation verifies that:

■ The remote database is available.

■ The replication agent is running.

■ The remote database has the correct role. The role must be 'ACTIVE' when the
duplicate operation is attempted for creation of a standby database. The role must
be 'STANDBY' or 'ACTIVE' when the duplicate operation is attempted for
creation of a read-only subscriber.

When the conditions for the duplicate operation are satisfied, the existing failed
database is destroyed and the duplicate operation starts.

When an active database or its host fails
If there is a failure on the node where the active database resides, Oracle Clusterware
automatically changes the state of the standby database to 'ACTIVE'. If application
failover is configured, then the application begins updating the new active database.

Figure 7–2 shows that the state of the standby database has changed to 'ACTIVE' and
that the application is updating the new active database.

Recovering from failures

Using Oracle Clusterware to Manage Active Standby Pairs 7-19

Figure 7–2 Standby database becomes active

Oracle Clusterware tries to restart the database or host where the failure occurred. If it
is successful, then that database becomes the standby database.

Figure 7–3 shows a cluster where the former active node becomes the standby node.

Figure 7–3 Standby database starts on former active host

If the failure of the former active node is permanent and advanced availability is
configured, Oracle Clusterware starts a standby database on one of the extra nodes.

Standby
database

Read-only
subscriber

Shared
storage

Extra
node 1

Extra
node 2

Active

Application
updates

Application
reads

Active
database

Active
database

Standby
database

Read-only
subscriber

Shared
storage

Extra
node 1

Extra
node 2

ActiveStandby

Application
reads

Application
updates

Recovering from failures

7-20 Oracle TimesTen In-Memory Database Replication Guide

Figure 7–4 shows a cluster in which the standby database is started on one of the extra
nodes.

Figure 7–4 Standby database starts on extra host

If you do not want to wait for these automatic actions to occur, see "Performing a
forced switchover after failure of the active database or host" on page 7-25.

When a standby database or its host fails
If there is a failure on the standby node, Oracle Clusterware first tries to restart the
database or host. If it cannot restart the standby database on the same host and
advanced availability is configured, Oracle Clusterware starts the standby database on
an extra node.

Figure 7–5 shows a cluster in which the standby database is started on one of the extra
nodes.

Standby
database

Read-only
subscriber

Shared
storage

Extra
node 1

Active

Standby
data store

Application
updates

Application
reads

Active
database

Recovering from failures

Using Oracle Clusterware to Manage Active Standby Pairs 7-21

Figure 7–5 Standby database on new host

When read-only subscribers or their hosts fail
If there is a failure on a subscriber node, Oracle Clusterware first tries to restart the
database or host. If it cannot restart the database on the same host and advanced
availability is configured, Oracle Clusterware starts the subscriber database on an
extra node.

When failures occur on both master nodes
This section includes these topics:

■ Automatic recovery when not attached to a grid

■ Manual recovery of both nodes of an active standby pair grid member

■ Manual recovery for advanced availability

■ Manual recovery for basic availability

■ Manual recovery to the same master nodes when databases are corrupt

■ Manual recovery when RETURN TWOSAFE is configured

Automatic recovery when not attached to a grid
Oracle Clusterware can achieve automatic recovery from temporary failure on both
master nodes after the nodes come back up if:

■ RETURN TWOSAFE is not specified for the active standby pair.

■ AutoRecover is set to y.

■ RepBackupDir specifies a directory on shared storage.

■ RepBackupPeriod is set to a value greater than 0.

Active
database

Read-only
subscriber

Application
updates

Shared
storage

Extra
node 1

Application
reads

Standby
database

Standby
database

Recovering from failures

7-22 Oracle TimesTen In-Memory Database Replication Guide

Oracle Clusterware can achieve automatic recovery from permanent failure on both
master nodes if:

■ Advanced availability is configured (virtual IP addresses and at least four hosts).

■ The active standby pair does not replicate cache groups.

■ A cache grid is not configured.

■ RETURN TWOSAFE is not specified for the active standby pair.

■ AutoRecover is set to y.

■ RepBackupDir specifies a directory on shared storage.

■ RepBackupPeriod is set to a value greater than 0.

See "Recovering from permanent failure of both master nodes" on page 7-8 for
examples of cluster.oracle.ini files.

Manual recovery of both nodes of an active standby pair grid member
If both nodes of an active standby pair grid member fail, then the grid member fails.
Oracle Clusterware evicts the failed grid member from the grid automatically. After
the failed grid member is removed from the grid, you can continue to recover
manually. However, when a cache grid is configured, any further automatic recovery
after a dual failure, whether temporary or permanent, is not possible.

If the active standby pair grid member is in an asynchronous replication scheme, the
grid member is recovered automatically and reattached to the grid. If the active
standby pair grid member is in a replication scheme with RETURN TWOSAFE
configured, perform these steps to recover the grid member and reattach it to the grid:

1. Stop the replication agent and the cache agent and disconnect the application from
both databases. This step detaches the grid member from the grid.

ttCWAdmin -stop advancedGridDSN

2. Drop the active standby pair.

ttCWAdmin -drop advancedGridDSN

3. Create the active standby pair replication scheme.

ttCWAdmin -create advancedGridDSN

4. Start the active standby pair replication scheme. This step attaches the grid
member to the grid.

ttCWAdmin -start advancedGridDSN

Manual recovery for advanced availability
This section assumes that the failed master nodes will be recovered to new hosts on
which TimesTen and Oracle Clusterware have been installed. These steps use the
manrecoveryDSN database and cluster.oracle.ini file for examples.

To perform manual recovery in an advanced availability configuration, perform these
tasks:

1. Ensure that the TimesTen cluster agent is running on the local host.

ttCWAdmin -init -hosts localhost

Recovering from failures

Using Oracle Clusterware to Manage Active Standby Pairs 7-23

2. Restore the backup database. Ensure that there is not already a database on the
host with the same DSN as the database you want to restore.

ttCWAdmin -restore -dsn manrecoveryDSN

3. If there are cache groups in the database, drop and re-create the cache groups.

4. If the new hosts are not already specified by MasterHosts and
SubscriberHosts in the cluster.oracle.ini file, then modify the file to
include the new hosts.

These steps use manrecoveryDSN. This step is not necessary for
manrecoveryDSN because extra hosts are already specified in the
cluster.oracle.ini file.

5. Re-create the active standby pair replication scheme.

ttCWAdmin -create -dsn manrecoveryDSN

6. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn manrecoveryDSN

Manual recovery for basic availability
This section assumes that the failed master nodes will be recovered to new hosts on
which TimesTen and Oracle Clusterware have been installed. These steps use the
basicDSN database and cluster.oracle.ini file for examples.

To perform manual recovery in a basic availability configuration, perform these steps:

1. Acquire new hosts for the databases in the active standby pair.

2. Ensure that the TimesTen cluster agent is running on the local host.

ttCWAdmin -init -hosts localhost

3. Restore the backup database. Ensure that there is not already a database on the
host with the same DSN as the database you want to restore.

ttCWADmin -restore -dsn basicDSN

4. If there are cache groups in the database, drop and re-create the cache groups.

5. Update the MasterHosts and SubscriberHosts entries in the
cluster.oracle.ini file. This example uses the basicDSN database. The
MasterHosts entry changes from host1 to host10. The SubscriberHosts
entry changes from host2 to host20.

[basicDSN]
MasterHosts=host10,host20

6. Re-create the active standby pair replication scheme.

ttCWAdmin -create -dsn basicDSN

7. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn basicDSN

Manual recovery to the same master nodes when databases are corrupt
Failures can occur on both master nodes so that the databases are corrupt. If you want
to recover to the same master nodes, perform the following steps:

Recovering from failures

7-24 Oracle TimesTen In-Memory Database Replication Guide

1. Ensure that the replication agent and the cache agent are stopped and that
applications are disconnected from both databases. This example uses the
basicDSN database.

ttCWAdmin -stop -dsn basicDSN

2. On the node where you want the new active database to reside, destroy the
databases by using the ttDestroy utility.

ttDestroy basicDSN

3. Restore the backup database.

ttCWADmin -restore -dsn basicDSN

4. If there are cache groups in the database, drop and re-create the cache groups.

5. Re-create the active standby pair replication scheme.

ttCWAdmin -create -dsn basicDSN

6. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn basicDSN

Manual recovery when RETURN TWOSAFE is configured
You can configure an active standby pair to have a return service of RETURN
TWOSAFE by using the ReturnServiceAttribute Clusterware attribute in the
cluster.oracle.ini file. When RETURN TWOSAFE is configured, the database logs
may be available on one or both nodes after both nodes fail.

This cluster.oracle.ini example includes backup configuration in case the
database logs are not available:

[basicTwosafeDSN]
MasterHosts=host1,host2
ReturnServiceAttribute=RETURN TWOSAFE
RepBackupDir=/shared_drive/dsbackup
RepBackupPeriod=3600

Perform these recovery tasks:

1. Ensure that the replication agent and the cache agent are stopped and that
applications are disconnected from both databases.

ttCWAdmin -stop -dsn basicTwosafeDSN

2. Drop the active standby pair.

ttCWAdmin -drop -dsn basicTwosafeDSN

3. Decide whether the former active or standby database is more up to date and
re-create the active standby pair using the chosen database. The command
prompts you to choose the host on which the active database will reside.

ttCWAdmin -create -dsn basicTwosafeDSN

If neither database is usable, restore the database from backups.

ttCWAdmin -restore -dsn basicTwosafeDSN

4. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn basicTwosafeDSN

Planned maintenance

Using Oracle Clusterware to Manage Active Standby Pairs 7-25

When more than two master hosts fail
Approach a failure of more than two master hosts as a more extreme case of dual host
failure. Use these guidelines:

■ Address the root cause of the failure if it is something like a power outage or
network failure.

■ Identify or obtain at least two healthy hosts for the active and standby databases.

■ Update the MasterHosts and SubscriberHosts entries in the
cluster.oracle.ini file.

■ See "Manual recovery for advanced availability" on page 7-22 and "Manual
recovery for basic availability" on page 7-23 for guidelines on subsequent actions
to take.

Performing a forced switchover after failure of the active database or host
If you want to force a switchover to the standby database without waiting for
automatic recovery to be performed by TimesTen and Oracle Clusterware, you can
write an application that uses Oracle Clusterware commands. These are the tasks to
perform:

1. Use the crs_stop command to stop the ttCRSmaster resource on the active
database. This causes the role of the standby database to change to active.

2. Use the crs_start command to restart the ttCRSmaster resource on the
former active database. This causes the database to recover and become the
standby database.

See Oracle Clusterware Administration and Deployment Guide for more information about
the crs_stop and crs_start commands.

Planned maintenance
This section includes the following topics:

■ Changing the schema

■ Performing a rolling upgrade of Oracle Clusterware software

■ Upgrading TimesTen

■ Adding a read-only subscriber to an active standby pair

■ Removing a read-only subscriber from an active standby pair

■ Adding an active standby pair to a cluster

■ Removing an active standby pair from a cluster

■ Adding a host to the cluster

■ Removing a host from the cluster

■ Reversing the roles of the master databases

■ Moving a database to a different host

■ Performing host or network maintenance

■ Performing maintenance on the entire cluster

■ Changing user names or passwords

Planned maintenance

7-26 Oracle TimesTen In-Memory Database Replication Guide

Changing the schema
To include or exclude a table, see "Making DDL changes in an active standby pair" on
page 6-1.

To include or exclude a cache group, see "Making schema changes to active standby
pairs in a grid" on page 7-16.

To create PL/SQL procedures, sequences, materialized views and indexes on tables
with data, perform these tasks:

1. Enable the addition of the object to the active standby pair.

ttCWAdmin -beginAlterSchema advancedDSN

2. Create the object.

3. If the object is a sequence and you want to include it in the active standby pair
replication scheme, alter the active standby pair.

ALTER ACTIVE STANDBY PAIR INCLUDE samplesequence;

4. Duplicate the change to the standby database.

ttCWAdmin -endAlterSchema advancedDSN

To add or drop a subscriber database or alter database attributes, perform the
following tasks:

1. Stop the replication agents on the databases in the active standby pair. These
commands use the advancedCacheDSN as an example.

ttCWAdmin -stop -dsn advancedCacheDSN

2. Drop the active standby pair.

ttCWAdmin -drop -dsn advancedCacheDSN

3. Modify the schema as desired.

4. Re-create the active standby pair replication scheme.

ttCWAdmin -create -dsn advancedCacheDSN

5. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn advancedCacheDSN

Performing a rolling upgrade of Oracle Clusterware software
See Oracle Clusterware Administration and Deployment Guide.

Upgrading TimesTen
See "Upgrading TimesTen when using Oracle Clusterware" in Oracle TimesTen
In-Memory Database Installation Guide.

Adding a read-only subscriber to an active standby pair
To add a read-only subscriber to an active standby pair replication scheme managed
by Oracle Clusterware, perform these steps:

Planned maintenance

Using Oracle Clusterware to Manage Active Standby Pairs 7-27

1. Stop the replication agents on all databases. This example uses the
advancedSubscriberDSN, which already has a subscriber and is configured for
advanced availability.

ttCWAdmin -stop -dsn advancedSubscriberDSN

2. Drop the active standby pair.

ttCWAdmin -drop -dsn advancedSubscriberDSN

3. Modify the cluster.oracle.ini file.

■ Add the subscriber to the SubscriberHosts attribute.

■ If the cluster is configured for advanced availability, add a virtual IP address
to the SubscriberVIP attribute.

See "Configuring advanced availability" on page 7-5 for an example using these
attributes.

4. Create the active standby pair replication scheme.

ttCWAdmin -create -dsn advancedSubscriberDSN

5. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn advancedSubscriberDSN

Removing a read-only subscriber from an active standby pair
To remove a read-only subscriber from an active standby pair, perform these steps:

1. Stop the replication agents on all databases. This example uses the
advancedSubscriberDSN, which has a subscriber and is configured for
advanced availability.

ttCWAdmin -stop -dsn advancedSubscriberDSN

2. Drop the active standby pair.

ttCWAdmin -drop -dsn advancedSubscriberDSN

3. Modify the cluster.oracle.ini file.

■ Remove the subscriber from the SubscriberHosts attribute or remove the
attribute altogether if there are no subscribers left in the active standby pair.

■ Remove a virtual IP from the SubscriberVIP attribute or remove the
attribute altogether if there are no subscribers left in the active standby pair.

4. Create the active standby pair replication scheme.

ttCWAdmin -create -dsn advancedSubscriberDSN

5. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn advancedSubscriberDSN

Adding an active standby pair to a cluster
To add an active standby pair (with or without subscribers) to a cluster that is already
managing an active standby pair, perform these tasks:

Planned maintenance

7-28 Oracle TimesTen In-Memory Database Replication Guide

1. Create and populate a database on the host where you intend the active database
to reside initially. See "Create and populate a TimesTen database on one host" on
page 7-12.

2. Modify the cluster.oracle.ini file. This example adds advSub2DSN to the
cluster.oracle.ini file that already contains the configuration for
advancedSubscriberDSN. The new active standby pair is on different hosts
from the original active standby pair.

[advancedSubscriberDSN]
MasterHosts=host1,host2,host3
SubscriberHosts=host4, host5
MasterVIP=192.168.1.1, 192.168.1.2
SubscriberVIP=192.168.1.3
VIPInterface=eth0
VIPNetMask=255.255.255.0

[advSub2DSN]
MasterHosts=host6,host7,host8
SubscriberHosts=host9, host10
MasterVIP=192.168.1.4, 192.168.1.5
SubscriberVIP=192.168.1.6
VIPInterface=eth0
VIPNetMask=255.255.255.0

3. Create new virtual IP addresses. On UNIX, the user must be root to do this.

ttCWAdmin -createVIPs -dsn advSub2DSN

4. Create the new active standby pair replication scheme.

ttCWAdmin -create -dsn advSub2DSN

5. Start the new active standby pair replication scheme.

ttCWAdmin -start -dsn advSub2DSN

Adding a read-only subscriber not managed by Oracle Clusterware
You can add a read-only subscriber that is not managed by Oracle Clusterware to an
existing active standby pair replication scheme that is managed by Oracle
Clusterware. Using the ttCWAdmin -beginAlterSchema command enables you to
add the subscriber without dropping and recreating the replication scheme. Oracle
Clusterware does not manage the subscriber because it is not part of the configuration
that was set up for Oracle Clusterware management.

Perform these steps:

1. Enter the ttCWAdmin -beginAlterSchema command to stop the replication
agent on the active and standby databases.

2. Using ttIsql to connect to the active database, add the subscriber to the
replication scheme by using an ALTER ACTIVE STANDBY PAIR statement.

ALTER ACTIVE STANDBY PAIR ADD SUBSCRIBER ROsubDSN ON host6;

3. Enter the ttCWAdmin -endAlterSchema command to duplicate the standby
database, register the altered replication scheme and start replication.

4. Enter the ttIsql repschemes command to verify that the read-only subscriber
has been added to the replication scheme.

Planned maintenance

Using Oracle Clusterware to Manage Active Standby Pairs 7-29

5. Use the ttRepStateGet procedure to verify that the state of the standby
database is STANDBY.

6. On the subscriber host, use ttRepAdmin -duplicate to duplicate the standby
database to the read-only subscriber. See "Duplicating a database" on page 4-2.

7. Start the replication agent on the subscriber host.

Rebuilding a read-only subscriber not managed by Oracle Clusterware
You can destroy and rebuild a read-only subscriber that is not managed by Oracle
Clusterware. Perform these tasks:

1. Stop the replication agent on the subscriber host.

2. Use the ttDestroy utility to destroy the subscriber database.

3. On the subscriber host, use ttRepAdmin -duplicate to duplicate the standby
database to the read-only subscriber. See "Duplicating a database" on page 4-2.

Removing an active standby pair from a cluster
To remove an active standby pair (with or without subscribers) from a cluster, perform
these tasks:

1. Stop the replication agents on all databases in the active standby pair. This
example uses advSub2DSN, which was added in "Adding an active standby pair
to a cluster" on page 7-27.

ttCWAdmin -stop -dsn advSub2DSN

2. Drop the active standby replication scheme.

ttCWAdmin -drop -dsn advSub2DSN

3. Drop the virtual IP addresses for the active standby pair.

ttCWAdmin -dropVIPs -dsn advSub2DSN

4. Modify the cluster.oracle.ini file (optional). Remove the entries for
advSub2DSN.

5. If you want to destroy the databases, log onto each host that was included in the
configuration for this active standby pair and use the ttDestroy utility.

ttDestroy advSub2DSN

For more information about ttDestroy, see "ttDestroy" in Oracle TimesTen
In-Memory Database Reference.

Adding a host to the cluster
Adding a host requires that the cluster be configured for advanced availability. The
examples in this section use the advancedSubscriberDSN.

To add two spare master hosts to a cluster, enter a command similar to the following:

ttCWAdmin -addMasterHosts -hosts "host8,host9" -dsn advancedSubscriberDSN

To add a spare subscriber host to a cluster, enter a command similar to the following:

ttCWAdmin -addSubscriberHosts -hosts "subhost1" -dsn advancedSubscriberDSN

Planned maintenance

7-30 Oracle TimesTen In-Memory Database Replication Guide

Removing a host from the cluster
Removing a host from the cluster requires that the cluster be configured for advanced
availability. MasterHosts must list more than two hosts if one of the master hosts is
to be removed. SubscriberHosts must list at least one more host than the number
of subscriber databases if one of the subscriber hosts is to be removed.

The examples in this section use the advancedSubscriberDSN.

To remove two spare master host from the cluster, enter a command similar to the
following:

ttCWAdmin -delMasterHosts "host8,host9" -dsn advancedSubscriberDSN

To remove a spare subscriber hosts from the cluster, enter a command similar to the
following:

ttCWAdmin -delSubscriberHosts "subhost1" -dsn advancedSubscriberDSN

Reversing the roles of the master databases
After a failover, the active and standby databases are on different hosts than they were
before the failover. You can use the -switch option of the ttCWAdmin utility to
restore the original configuration.

For example:

ttCWAdmin -switch -dsn basicDSN

Ensure that there are no open transactions before using the -switch option. If there
are open transactions, the command fails.

Figure 7–6 shows the hosts for an active standby pair. The active database resides on
host A, and the standby database resides on host B.

Figure 7–6 Hosts for an active standby pair

The ttCWAdmin -switch command performs these tasks:

■ Deactivates the TimesTen cluster agent (ttCRSAgent) on host A (the active node)

■ Disables the database monitor (ttCRSmaster) on host A

■ Calls the ttRepSubscriberWait, ttRepStop and ttRepDeactivate built-in
procedures on host A

■ Stops the active service (ttCRSActiveService) on host A and reports a failure
event to the Oracle Clusterware CRSD process

Master
database

Cluster
agent

Database
monitor

Active
service

Host A Host B

Master
database

Cluster
agent

Database
monitor

Standby
service

Planned maintenance

Using Oracle Clusterware to Manage Active Standby Pairs 7-31

■ Enables monitoring on host A and moves the active service to host B

■ Starts the replication agent on host A, stops the standby service
(ttCRSsubservice) on host B and reports a failure event to the Oracle
Clusterware CRSD process on host B

■ Starts the standby service (ttCRSsubservice) on host A

Moving a database to a different host
When a cluster is configured for advanced availability, you can use the -relocate
option of the ttCWAdmin utility to move a database from the local host to the next
available spare host specified in the MasterHosts attribute in the
cluster.oracle.ini file. If the database on the local host has the active role, the
-relocate option first reverses the roles. Thus the newly migrated active database
becomes the standby and the standby becomes the active.

The -relocate option is useful for relocating a database if you decide to take the
host offline. Ensure that there are no open transactions before you use the command.

For example:

ttCWAdmin -relocate -dsn advancedDSN

Performing host or network maintenance
If you decide to upgrade the operating system or hardware for a host or perform
network maintenance, shut down Oracle Clusterware and disable automatic startup.
Execute these Oracle Clusterware commands as root or OS administrator:

crsctl stop crs

crsctl disable crs

Shut down TimesTen. See "Shutting down a TimesTen application" in Oracle TimesTen
In-Memory Database Operations Guide.

Perform the host maintenance. Then enable automatic startup and start Oracle
Clusterware:

crsctl enable crs

crsctl start crs

See Oracle Clusterware Administration and Deployment Guide for more information about
these commands.

Performing maintenance on the entire cluster
When all of the hosts in the cluster need to be brought down, stop Oracle Clusterware
on each host individually. Execute these Oracle Clusterware commands as root or OS
administrator:

crsctl stop crs

crsctl disable crs

Shut down TimesTen. See "Shutting down a TimesTen application" in Oracle TimesTen
In-Memory Database Operations Guide.

Perform the maintenance. Then enable automatic startup and start Oracle Clusterware:

Monitoring cluster status

7-32 Oracle TimesTen In-Memory Database Replication Guide

crsctl enable crs

crsctl start crs

See Oracle Clusterware Administration and Deployment Guide for more information about
these commands.

Changing user names or passwords
When you create the active standby pair replication scheme with the ttCWAdmin
-create command, Oracle Clusterware prompts for the user name and password of
the internal user. If there are cache groups in the active standby pair, Oracle
Clusterware also stores the cache administration user name and password. To change
the user name or password for the internal user or the cache administration user, you
must re-create the cluster.

To change the user name or password of the internal user that created the active
standby pair replication or to change the cache administration user name or password,
perform these tasks:

1. Stop the replication agents on the databases in the active standby pair. These
commands use the advancedCacheDSN as an example.

ttCWAdmin -stop -dsn advancedCacheDSN

2. Drop the active standby pair.

ttCWAdmin -drop -dsn advancedCacheDSN

3. Change the appropriate user name or password:

■ Change the internal user name or password by using the CREATE USER or
ALTER USER statements. See "Creating or identifying users to the database" in
Oracle TimesTen In-Memory Database Operations Guide.

■ Change the cache administration user name or password by using the
ttCacheUidPwdSet built-in procedure. See "Setting the cache administration
user name and password" in Oracle In-Memory Database Cache User's Guide.

4. Re-create the active standby pair replication scheme.

ttCWAdmin -create -dsn advancedCacheDSN

5. Start the active standby pair replication scheme.

ttCWAdmin -start -dsn advancedCacheDSN

Monitoring cluster status
This section includes:

■ Obtaining cluster status

■ Message log files

Obtaining cluster status
Using the -status option of the ttCWAdmin utility reports information about all of
the active standby pairs in an instance that are managed by the same instance
administrator. If you specify the DSN, the utility reports information for the active
standby pair with that DSN.

Monitoring cluster status

Using Oracle Clusterware to Manage Active Standby Pairs 7-33

Example 7–1 Status after creating an active standby pair

After you have created an active standby pair replication scheme but have not yet
started replication, ttCWAdmin -status returns information like this. Note that
these grid states will be displayed before replication is started regardless of whether
there is a cache grid.

$ ttCWAdmin -status
TimesTen Cluster status report as of Thu Nov 11 13:54:35 2010

==
TimesTen daemon monitors:
Host:HOST1 Status: online
Host:HOST2 Status: online

==
==
TimesTen Cluster agents
Host:HOST1 Status: online
Host:HOST2 Status: online

==

Status of Cluster related to DSN MYDSN:
==
1. Status of Cluster monitoring components:
Monitor Process for Active datastore:NOT RUNNING
Monitor Process for Standby datastore:NOT RUNNING
Monitor Process for Master Datastore 1 on Host host1: NOT RUNNING
Monitor Process for Master Datastore 2 on Host host2: NOT RUNNING

2.Status of Datastores comprising the cluster
Master Datastore 1:
Host:host1
Status:AVAILABLE
State:ACTIVE
Grid:NO GRID
Master Datastore 2:
Host:host2
Status:UNAVAILABLE
State:UNKNOWN
Grid:UNKNOWN
==
The cluster containing the replicated DSN is offline

Example 7–2 Status when the active database is running

After you have started the replication scheme and the active database is running but
the standby database is not yet running, ttCWAdmin -status returns information
like this when a cache grid is not configured.

$ ttcwadmin -status
TimesTen Cluster status report as of Thu Nov 11 13:58:25 2010

==
TimesTen daemon monitors:
Host:HOST1 Status: online
Host:HOST2 Status: online

==
==

Monitoring cluster status

7-34 Oracle TimesTen In-Memory Database Replication Guide

TimesTen Cluster agents
Host:HOST1 Status: online
Host:HOST2 Status: online

==

Status of Cluster related to DSN MYDSN:
==
1. Status of Cluster monitoring components:
Monitor Process for Active datastore:RUNNING on Host host1
Monitor Process for Standby datastore:RUNNING on Host host1
Monitor Process for Master Datastore 1 on Host host1: RUNNING
Monitor Process for Master Datastore 2 on Host host2: RUNNING

2.Status of Datastores comprising the cluster
Master Datastore 1:
Host:host1
Status:AVAILABLE
State:ACTIVE
Grid:NO GRID
Master Datastore 2:
Host:host2
Status:AVAILABLE
State:IDLE
Grid:NO GRID
==
The cluster containing the replicated DSN is online

If a cache grid is configured, then the last section appears as follows:

2.Status of Datastores comprising the cluster
Master Datastore 1:
Host:host1
Status:AVAILABLE
State:ACTIVE
Grid:AVAILABLE
Master Datastore 2:
Host:host2
Status:AVAILABLE
State:IDLE
Grid:NO GRID

Example 7–3 Status when the active and the standby databases are running

After you have started the replication scheme and the active database and the standby
database are both running, ttCWAdmin -status returns information like this when
a cache grid is not configured.

$ ttcwadmin -status
TimesTen Cluster status report as of Thu Nov 11 13:59:20 2010

==
TimesTen daemon monitors:
Host:HOST1 Status: online
Host:HOST2 Status: online

==
==
TimesTen Cluster agents
Host:HOST1 Status: online
Host:HOST2 Status: online

Monitoring cluster status

Using Oracle Clusterware to Manage Active Standby Pairs 7-35

==

Status of Cluster related to DSN MYDSN:
==
1. Status of Cluster monitoring components:
Monitor Process for Active datastore:RUNNING on Host host1
Monitor Process for Standby datastore:RUNNING on Host host2
Monitor Process for Master Datastore 1 on Host host1: RUNNING
Monitor Process for Master Datastore 2 on Host host2: RUNNING

2.Status of Datastores comprising the cluster
Master Datastore 1:
Host:host1
Status:AVAILABLE
State:ACTIVE
Grid:NO GRID
Master Datastore 2:
Host:host2
Status:AVAILABLE
State:STANDBY
Grid:NO GRID
==
The cluster containing the replicated DSN is online

If a cache grid is configured, then the last section appears as follows:

2.Status of Datastores comprising the cluster
Master Datastore 1:
Host:host1
Status:AVAILABLE
State:ACTIVE
Grid:AVAILABLE
Master Datastore 2:
Host:host2
Status:AVAILABLE
State:STANDBY
Grid:AVAILABLE

Message log files
The monitor processes report events and errors to the ttcwerrors.log and
ttcwmsg.log files. The files are located in the daemon_home/info directory. The
default size of these files is the same as the default maximum size of the user log. The
maximum number of log files is the same as the default number of files for the user
log. When the maximum number of files has been written, additional errors and
messages overwrite the files, beginning with the oldest file.

For the default values for number of log files and log file size, see "Modifying
informational messages" in Oracle TimesTen In-Memory Database Operations Guide.

Monitoring cluster status

7-36 Oracle TimesTen In-Memory Database Replication Guide

8

TimesTen Configuration Attributes for Oracle Clusterware 8-1

8TimesTen Configuration Attributes for
Oracle Clusterware

The attributes defined in this chapter are used to set up TimesTen active standby pairs
that are managed by Oracle Clusterware. These attributes are specified in the
cluster.oracle.ini file. The ttCWAdmin utility creates and administers active
standby pairs based on the information in the cluster.oracle.ini file.

List of attributes
This section lists the TimesTen configuration attributes for Oracle Clusterware in these
tables:

■ Table 8–1, " Required attributes"

■ Table 8–2, " Conditionally required attributes"

■ Table 8–3, " Optional attributes"

Table 8–1 Required attributes

Name Description Default

MasterHosts Lists host names that may
contain master databases in an
active standby pair scheme.

None

Table 8–2 Conditionally required attributes

Name Description Default

AppCheckCmd Command line for checking
the status of a TimesTen
application that is managed
by Oracle Clusterware

None

AppName The name of a TimesTen
application that is managed
by Oracle Clusterware

None

AppStartCmd Command line for starting a
TimesTen application that is
managed by Oracle
Clusterware

None

AppStopCmd Command line for stopping a
TimesTen application that is
managed by Oracle
Clusterware

None

List of attributes

8-2 Oracle TimesTen In-Memory Database Replication Guide

AppType The database to which the
application should link.

None

CacheConnect Specifies whether the active
standby pair replicates cache
groups.

N

GridPort Lists the port numbers used
by the cache grid agents for
the active database and the
standby database in an active
standby pair that is a cache
grid member.

None

MasterVIP A list of two virtual IP
addresses that can be
associated with the master
databases.

None

RemoteSubscriberHosts A list of subscriber hosts that
are not part of the cluster.

None

RepBackupDir The directory to which the
active database is backed up.

None

SubscriberHosts List of host names that can
contain subscriber databases.

None

SubscriberVIP The list of virtual IP addresses
that can be associated with
subscriber databases.

None

VIPInterface The name of the public
network adapter that will be
used for virtual IP addresses
on each host.

None

VIPNetMask The netmask of the virtual IP
addresses.

None

Table 8–3 Optional attributes

Name Description Default

AppFailoverDelay The number of seconds that
the Oracle Clusterware
resource that monitors the
application waits after a
failure is detected before
performing a failover.

0

AppFailureInterval The interval in seconds before
which Oracle Clusterware
stops a TimesTen application
if the application has exceeded
the number of failures
specified by the Oracle
Clusterware FAILURE_
THRESHOLD resource
attribute.

60

Table 8–2 (Cont.) Conditionally required attributes

Name Description Default

List of attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-3

AppFailureThreshold The number of consecutive
Oracle Clusterware resource
failures that Oracle
Clusterware tolerates for the
action script for an application
within an interval equal to 10
* AppScriptTimeout. The
default is 2.

2

AppRestartAttempts The number of times that
Oracle Clusterware attempts
to restart the TimesTen
application on the current host
before moving the application

100

AppScriptTimeout The number of seconds the
TimesTen application
container waits for the action
scripts to complete for a
specific application.

60

AppUptimeThreshold The number of seconds that a
TimesTen application must be
up before Oracle Clusterware
considers the application to be
stable.

600

AutoRecover Specifies whether an active
database should be
automatically recovered from
a backup if both master
databases fail.

No

DatabaseFailoverDelay The number of seconds that
Oracle Clusterware waits
before migrating a database to
a new host after a failure.

60

FailureThreshold The number of consecutive
failures of resources managed
by Oracle Clusterware that are
tolerated within 10 seconds
before the active standby pair
is considered failed and a new
active standby pair is created
on spare hosts using the
automated backup.

2

MasterStoreAttribute A list of all desired replication
scheme STORE attributes on
master databases.

None

RepBackupPeriod The number of seconds
between each backup of the
active database.

0 (disabled)

RepDDL A SQL construct of the active
standby pair scheme.

None

RepFullBackupCycle The number times an
incremental backup occurs
between full backups.

5

ReturnServiceAttribute The return service attribute of
the active standby pair
scheme.

None

Table 8–3 (Cont.) Optional attributes

Name Description Default

List of attributes

8-4 Oracle TimesTen In-Memory Database Replication Guide

SubscriberStoreAttribute The list of all desired
replication scheme STORE
attributes for the subscriber
database.

None

TimesTenScriptTimeout The number of seconds that
Oracle Clusterware waits for
the monitor process to start
before assuming a failure.

1209600 seconds, or 14
days

Table 8–3 (Cont.) Optional attributes

Name Description Default

Required attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-5

Required attributes

These attributes must be present for each DSN in the cluster.oracle.ini file.
They have no default values.

The required attributes are listed in Table 8–1, " Required attributes" and described in
detail in this section.

MasterHosts

8-6 Oracle TimesTen In-Memory Database Replication Guide

MasterHosts

This attribute lists the host names that can contain master databases in the active
standby pair. The first host listed has the active database when the cluster is started
initially and after restarts. There are exceptions to the designated order:

■ If there are already active and standby databases on specific nodes when the
cluster is stopped, then the active and standby databases remain on those hosts
when the cluster is restarted.

■ If the cluster is started and the only existing database is on a host that is not listed
first in MasterHosts, then that host will be configured with the active database.
The first host listed for MasterHosts will be the standby database.

If the scheme contains no virtual IP addresses, only two master hosts are allowed.

Setting
Set MasterHosts as follows:

How the attribute is
represented Setting

MasterHosts A comma-separated list of host names. The first host listed
becomes the initial active database in the active standby pair.

Conditionally required attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-7

Conditionally required attributes

These attributes may be required depending on the desired Oracle Clusterware
configuration. They have no default values. The conditionally required attributes are
listed in Table 8–2, " Conditionally required attributes" and described in detail in this
section.

AppCheckCmd

8-8 Oracle TimesTen In-Memory Database Replication Guide

AppCheckCmd

This attribute specifies the full command line for executing a user-supplied script or
program that checks the status of the TimesTen application specified by AppName. It
must include the full path name of the executable. If there are spaces in the path name,
enclose the path name in double quotes.

The command should be written to return 0 when the application is running and a
nonzero number when the application is not running. When Oracle Clusterware
detects a nonzero value, it takes action to recover the failed application.

Setting
Set AppCheckCmd as follows:

Examples
On UNIX:

AppCheckCmd=/mycluster/reader/app_check.sh check

On Windows:

AppCheckCmd="C:\Program Files\UserApps\UpdateApp.exe" -dsn myDSN -check

How the attribute is
represented Setting

AppCheckCmd A string representing the command line for executing an
application that checks the status of the application
specified by AppName.

Conditionally required attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-9

AppFailureInterval

This attribute sets the interval in seconds before which Oracle Clusterware stops a
TimesTen application if the application has exceeded the number of failures specified
by the Oracle Clusterware FAILURE_THRESHOLD resource attribute. If the value is
zero, then failure tracking is disabled.

For more information about the Oracle Clusterware FAILURE_THRESHOLD resource
attribute, see Oracle Clusterware Administration and Deployment Guide.

Setting
Set AppFailureInterval as follows:

How the attribute is
represented Setting

AppFailureInterval The number of seconds in the interval before Oracle
Clusterware stops an application. The default is 60. For
example:

AppFailureInterval=120

AppName

8-10 Oracle TimesTen In-Memory Database Replication Guide

AppName

This attribute specifies the name of a TimesTen application managed by Oracle
Clusterware. Oracle Clusterware uses the application name to name the corresponding
resource. Any description of an application in the cluster.oracle.ini file must
begin with this attribute.

Setting
Set AppName as follows:

How the attribute is
represented Setting

AppName A string representing the name of the application. For
example, testApp.

Conditionally required attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-11

AppRestartAttempts

This attribute specifies the number of times that Oracle Clusterware attempts to restart
the TimesTen application on the current host before moving the application to another
host.

Setting
Set AppRestartAttempts as follows:

How the attribute is
represented Setting

AppRestartAttempts The number of restart attempts. The default is 100. For
example:

AppRestartAttempts=30

AppStartCmd

8-12 Oracle TimesTen In-Memory Database Replication Guide

AppStartCmd

This attribute specifies the command line that starts the TimesTen application
specified by AppName. It must include the full path name of the executable. If there are
spaces in the path name, enclose the path name in double quotes.

Setting
Set AppStartCmd as follows:

Examples
On UNIX:

AppCheckCmd=/mycluster/reader/app_start.sh start

On Windows:

AppCheckCmd="C:\Program Files\UserApps\UpdateApp.exe" -dsn myDSN -start

How the attribute is
represented Setting

AppStartCmd A string that represents the command line for starting the
application specified by AppName.

Conditionally required attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-13

AppStopCmd

This attribute specifies the command line that stops the TimesTen application
specified by AppName. It must include the full path name of the executable. If there are
spaces in the path name, enclose the path name in double quotes.

Setting
Set AppStopCmd as follows:

Examples
On UNIX:

AppCheckCmd=/mycluster/reader/app_stop.sh stop

On Windows:

AppCheckCmd="C:\Program Files\UserApps\UpdateApp.exe" -dsn myDSN -stop

How the attribute is
represented Setting

AppStopCmd A string that represents the command line for stopping the
application specified by AppName.

AppType

8-14 Oracle TimesTen In-Memory Database Replication Guide

AppType

This attribute determines the hosts on which the TimesTen application should start.

Setting
Set AppType as follows:

How the attribute is
represented Setting

AppType Active - The application starts on the active database of an
active standby pair.

Standby - The application starts on the standby database of an
active standby pair. If the standby database fails, applications
linked to it migrate to the active database until a new standby
database is available.

DualMaster - The application starts on both the active host
and the standby host. The failure of the application on the
active host causes the active database and all other applications
on the host to fail over to the standby host.

Subscriber - The application starts on all subscriber
databases.

Subscriber[index]- The application starts on a subscriber
database. The subscriber host used is the host occupying
position index in either the SubscriberHosts attribute or
the SubscriberVIP attribute, depending on whether virtual
IP addresses are used. For a single subscriber, use
Subscriber[1]. If no index is specified, TimesTen assumes
that the application links to all subscribers.

Conditionally required attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-15

AppUptimeThreshold

This attribute specifies the value for the Oracle Clusterware UPTIME_THRESHOLD
resource attribute.The value represents the number of seconds that a TimesTen
application must be up before Oracle Clusterware considers the application to be
stable.

For more information about UPTIME_THRESHOLD, see Oracle Clusterware
Administration and Deployment Guide.

How the attribute is
represented Setting

AppUptimeThreshold Number of seconds. The default is 600. For example:

AppUptimeThreshold=60

CacheConnect

8-16 Oracle TimesTen In-Memory Database Replication Guide

CacheConnect

If the active standby pair replicates cache groups, set this attribute to Y. If you specify
Y, Oracle Clusterware assumes that TimesTen is connected to an Oracle database and
prompts for the Oracle password.

Setting
Set CacheConnect as follows:

How the attribute is
represented Setting

CacheConnect A value of Y (yes) or N (no). Default is N.

Conditionally required attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-17

GridPort

This attribute lists the port numbers used by the cache grid agents for the active
database and the standby database in an active standby pair that is a cache grid
member. The port numbers are separated by a comma. This is a mandatory parameter
when global cache groups are present.

Setting
Set GridPort as follows

How the attribute is
represented Setting

GridPort Two port numbers separated by a comma. For example:

GridPort=16101,16102

MasterVIP

8-18 Oracle TimesTen In-Memory Database Replication Guide

 MasterVIP

This attribute is a list of the two virtual IP (VIP) addresses associated with two master
databases. This is used for advanced availability. This attribute is required if you
intend to use virtual IP addresses.

Setting
Set MasterVIP as follows:

How the attribute is
represented Setting

MasterVIP A comma-separated list of two virtual IP addresses to the
master databases.

Conditionally required attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-19

RemoteSubscriberHosts

This attribute contains a list of subscriber hosts that are part of the active standby pair
replication scheme but are not managed by Oracle Clusterware.

Setting
Set RemoteSubscriberHosts as follows:

How the attribute is
represented Setting

RemoteSubscriberHosts A comma-separated list of subscriber hosts that are not
managed by Oracle Clusterware.

RepBackupDir

8-20 Oracle TimesTen In-Memory Database Replication Guide

RepBackupDir

This attribute indicates the directory where the backup of the active database is stored.
This must be a directory in a shared file system that every node in the cluster can
access. This attribute is required only if RepBackupPeriod is set to a value other than
0.

On UNIX, the directory must be a shared partition that is shared by all hosts in the
cluster. On UNIX platforms, the partition must be NFS or OCFS (Oracle Cluster File
System). On Windows, it must be an OCFS partition.

If you want to enable backup, install OCFS on the shared storage during the Oracle
Clusterware installation process. You can use this shared storage for backup for an
active standby pair.

See "Recovering from permanent failure of both master nodes" on page 7-8 and
"Failure and recovery for active standby pair grid members" on page 7-16 for
restrictions on backups.

Setting
Set RepBackupDir as follows:

How the attribute is
represented Setting

RepbackupDir Full path name to the replication backup directory.

Conditionally required attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-21

SubscriberHosts

Lists the host names that can contain subscriber databases. If virtual IP addresses are
used, this list can overlap with the master host list provided by the MasterHosts
attribute.

If the active standby pair is configured with subscribers, this attribute is required. It
has no default value.

Setting
Set SubscriberHosts as follows:

How the attribute is
represented Setting

SubscriberHosts A comma-separated list of host names. If virtual IP addresses
are used, the order in which hosts are assigned to subscriber
virtual IP addresses.

If virtual IP addresses are not used, the order is used to
determine which application with an AppType of
Subscriber[index] is attached to the subscriber database
on a specific host. Also, the number of subscriber hosts
specified is the number of subscribers that are part of the
active standby pair. A subscriber is brought up on every
subscriber host.

SubscriberVIP

8-22 Oracle TimesTen In-Memory Database Replication Guide

SubscriberVIP

This attribute is a list of the virtual IP addresses associated with the subscriber
databases. This is used for advanced availability. This attribute is required if you
intend to use virtual IP addresses.

Setting
Set SubscriberVIP as follows:

How the attribute is
represented Setting

SubscriberVIP One or more virtual IP addresses. These addresses are mapped
to SubscriberHosts. The number of subscriber virtual IP
addresses determines the number of subscribers that are
brought up as part of the active standby pair. The order of
subscriber virtual IP addresses is used to determine which
application with an AppType of Subscriber[index] is
attached to the database for a specific subscriber.

Conditionally required attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-23

VIPInterface

This attribute is the name of the public network adapter used for virtual IP addresses
on each host. This attribute is required if you intend to use virtual IP addresses.

Setting
Set VIPInterface as follows:

How the attribute is
represented Setting

VIPInterface A string representing a network adapter.

VIPNetMask

8-24 Oracle TimesTen In-Memory Database Replication Guide

VIPNetMask

This attribute is the netmask of the virtual IP addresses. This attribute is required if
you intend to use virtual IP addresses.

Setting
Set VIPNetMask as follows:

How the attribute is
represented Setting

VIPNetMask An IP netmask.

Optional attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-25

Optional attributes

These attributes are optional and have no default values. The optional attributes are
listed in Table 8–3, " Optional attributes" and described in detail in this section.

AppFailoverDelay

8-26 Oracle TimesTen In-Memory Database Replication Guide

AppFailoverDelay

This attribute specifies the number of seconds that the process that is monitoring the
application waits after a failure is detected before performing a failover. The default is
0.

Setting
Set AppFailoverDelay as follows:

How the attribute is
represented Setting

AppFailoverDelay An integer representing the number of seconds that the
process that is monitoring the application waits after a failure
is detected before performing a failover. The default is 0.

Optional attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-27

AppFailureThreshold

This attribute specifies the number of consecutive failures that Oracle Clusterware
tolerates for the action script for an application within an interval equal to 10 *
AppScriptTimeout. The default is 2.

Setting
Set AppFailureThreshold as follows:

How the attribute is
represented Setting

AppFailureThreshold An integer indicating the number of consecutive failures that
Oracle Clusterware tolerates for the action script for an
application. The default is 2.

AppScriptTimeout

8-28 Oracle TimesTen In-Memory Database Replication Guide

AppScriptTimeout

This attribute indicates the number of seconds that the TimesTen application monitor
process waits for the start action script and the stop action script to complete for a
specific application. The check action script has a nonconfigurable timeout of five
seconds and is not affected by this attribute.

Setting
Set AppScriptTimeout as follows:

How the attribute is
represented Setting

AppScriptTimeout An integer representing the number of seconds the TimesTen
application container waits for start and stop action scripts to
complete for a specific application. The default is 60.

Optional attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-29

AutoRecover

Specifies whether Oracle Clusterware automatically recovers the active database from
the backup in the case of a failure of both masters.

If recovery is not automated (AutoRecover=N), the database can be recovered using
the ttCWAdmin -restore command.

You cannot use AutoRecover if you are using cache groups in your configuration or
if a cache grid is configured.

Setting
Set AutoRecover as follows:

How the attribute is
represented Setting

AutoRecover Y - Oracle Clusterware automatically recovers the active
database from the backup if both masters fail.

N - In the case of the failure of both masters, you must recover
manually. This is the default.

DatabaseFailoverDelay

8-30 Oracle TimesTen In-Memory Database Replication Guide

DatabaseFailoverDelay

This attributes specifies the number of seconds that Oracle Clusterware waits before
migrating a database to a new host after a failure. Oracle Clusterware does not relocate
a database if the database comes up during the delay period. This is applicable when
advanced availability is configured. The default is 60 seconds.

Setting
Set DatabaseFailoverDelay as follows:

How the attribute is
represented Setting

DatabaseFailoverDelay An integer representing the number of seconds that Oracle
Clusterware waits before migrating a database to a new host
after a failure. The default is 60.

Optional attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-31

FailureThreshold

This attribute specifies the number of consecutive failures of resources managed by
Oracle Clusterware that are tolerated within 10 seconds before the active standby pair
is considered failed and a new active standby pair is created on spare hosts using the
automated backup. A spare node is only an option when using virtual IP addresses.

Oracle Clusterware tries to perform a duplicate for the active standby pair when a
single failure occurs; it tries to perform a restoration if more than a single failure
occurs.

This value is ignored for basic availability, since a spare node is only configured when
at least one virtual IP address is configured, or is ignored when RepBackupPeriod is
set to 0 when using advanced availability, which does include the configuration of at
least one virtual IP address.

Setting
Set FailureThreshold as follows:

Note: TimesTen tolerates only one failure of a backup resource,
regardless of the setting for this attribute.

How the attribute is
represented Setting

FailureThreshold An integer representing the number of consecutive failures of
resources managed by Oracle Clusterware that are tolerated
within 10 seconds before the active standby pair is considered
failed and a new active standby pair is created on spare hosts
using the automated backup. The default is 2.

MasterStoreAttribute

8-32 Oracle TimesTen In-Memory Database Replication Guide

MasterStoreAttribute

This attribute indicates the desired replication scheme STORE attributes for the master
databases. The STORE attributes apply to both the active and standby databases. The
STORE clause for replication schemes is defined in Oracle TimesTen In-Memory Database
SQL Reference.

This attribute is not required when RepDDL is configured.

If this attribute is not set, the STORE attributes take their default values. See "Setting
STORE attributes" on page 3-6.

Setting
Set MasterStoreAttribute as follows:

How the attribute is
represented Setting

MasterStoreAttribute The desired replication scheme STORE attributes for the
master databases. For example: PORT 20000 TIMEOUT 60.

Optional attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-33

RepBackupPeriod

This attribute indicates the number of seconds between each backup of the active
database. If this attribute is set to a value greater than 0, you must also specify a
backup directory by setting RepBackupDir.

See "Recovering from permanent failure of both master nodes" on page 7-8 and
"Failure and recovery for active standby pair grid members" on page 7-16 for
restrictions on backups.

Setting
Set RepBackupPeriod as follows:

How the attribute is
represented Setting

RepBackupPeriod An integer indicating the number of seconds between each
backup of the active database. A value of 0 disables the backup
process. The default is 0.

RepDDL

8-34 Oracle TimesTen In-Memory Database Replication Guide

RepDDL

This attribute represents the SQL statement that creates the active standby pair. Use
this attribute only in special circumstances. For example, you must specify RepDDL if
you need to exclude tables and sequences from the active standby pair.

If RepDDL is set, do not set these attributes:

■ ReturnServiceAttribute

■ MasterStoreAttribute

■ SubscriberStoreAttribute

Replace the database file name prefix in the SQL statement with the <DSN> macro. Use
the <MASTERHOST[1]>, <MASTERHOST[2]> and <SUBSCRIBERHOST[n]> macros
instead of the host names.

There is no default value for RepDDL.

This example sets RepDDL for two master databases:

RepDDL=CREATE ACTIVE STANDBY PAIR <DSN> ON <MASTERHOST[1]>, <DSN> ON
<MASTERHOST[2]>

See "Using the RepDDL attribute" on page 7-9 for additional examples.

You do not usually need to set the ROUTE clause in RepDDL because the transmitter of
the replication agent automatically obtains the private and public network interfaces
that Oracle Clusterware uses. However, if hosts have network connectivity for
replication schemes that are not managed by Oracle Clusterware, then RepDDL needs
to include the ROUTE clause.

If this attribute is used, each STORE clause must be followed by the pseudo host names
such as:

■ ActiveHost

■ ActiveVIP

■ StandbyHost

■ StandbyVIP

■ SubscriberHost

■ SubscriberVIP

Setting
Set RepDDL as follows:

How the attribute is
represented Setting

RepDDL Creates an active standby pair by issuing a CREATE ACTIVE
STANDBY PAIR statement. There is no default value.

Optional attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-35

RepFullBackupCycle

This attribute specifies the number of incremental backups between full backups. The
number of incremental backups depends on the capacity of the shared storage.

Setting this attribute can impact performance. There is a trade-off between the storage
capacity and the time consumption for backup. An incremental backup can be
performed much faster than a full backup. However, storage consumption increases
until a full backup is performed.

See "Recovering from permanent failure of both master nodes" on page 7-8 and
"Failure and recovery for active standby pair grid members" on page 7-16 for
restrictions on backups.

Setting
Set RepFullBackupCycle as follows:

How the attribute is
represented Setting

RepFullBackupCycle An integer value representing the number of incremental
backups to perform between full backups. The default is 5.

ReturnServiceAttribute

8-36 Oracle TimesTen In-Memory Database Replication Guide

ReturnServiceAttribute

This attribute specifies the return service for the active standby replication scheme. See
"Using a return service" on page 3-4.

If no value is specified for this attribute, the active standby pair is configured with no
return service.

Setting
Set ReturnServiceAttribute as follows:

How the attribute is
represented Setting

ReturnServiceAttribute The type of return service. For example: RETURN RECEIPT.
There is no default value.

Optional attributes

TimesTen Configuration Attributes for Oracle Clusterware 8-37

SubscriberStoreAttribute

This attribute indicates the replication scheme STORE attributes of subscriber
databases. The STORE attributes apply to all subscribers. The STORE clause for
replication schemes is defined in Oracle TimesTen In-Memory Database SQL Reference.

This attribute is not required when RepDDL is present.

If this attribute is not set, the STORE attributes take their default values. See "Setting
STORE attributes" on page 3-6.

Setting
Set SubscriberStoreAttribute as follows:

How the attribute is represented Setting

SubscriberStoreAttribute The list of STORE attributes and their values for the
subscriber databases.

For example: PORT 20000 TIMEOUT 60.

TimesTenScriptTimeout

8-38 Oracle TimesTen In-Memory Database Replication Guide

TimesTenScriptTimeout

This attribute specifies the number of seconds that Oracle Clusterware waits for the
monitor process to start before assuming a failure.

Oracle TimesTen recommends setting a value of several hours because the action
script may take a long time to duplicate the active database. The default is 1209600
seconds (14 days).

Setting
Set TimesTenScriptTimeout as follows:

How the attribute is
represented Setting

TimesTenScriptTimeout An integer representing the number of seconds that Oracle
Clusterware waits for the monitor process to start before
assuming a failure. The default is 1209600 seconds (14
days).

9

Defining Replication Schemes 9-1

9Defining Replication Schemes

This chapter describes how to define replication schemes that are not active standby
pairs. For information about defining active standby pair replication schemes, see
Chapter 3, "Defining an Active Standby Pair Replication Scheme". If you want to
replicate a database that has cache groups, see Chapter 5, "Administering an Active
Standby Pair with Cache Groups".

To reduce the amount of bandwidth required for replication, see "Compressing
replicated traffic" on page 9-23.

To replicate tables with columns in a different order or with a different number of
partitions, see "Replicating tables with different definitions" on page 9-25.

This chapter includes these topics:

■ Designing a highly available system

■ Defining a replication scheme

■ Table requirements and restrictions for replication schemes

■ Defining replication elements

■ Checking for replication conflicts on table elements

■ Setting transmit durability on data store elements

■ Using a return service

■ Setting STORE attributes

■ Configuring network operations

■ Replication scheme syntax examples

■ Creating replication schemes with scripts

Designing a highly available system
These are the primary objectives of any replication scheme:

■ Provide one or more backup databases to ensure that the data is always available
to applications

■ Provide a means to recover failed databases from their backup databases

■ Distribute workloads efficiently to provide applications with the quickest possible
access to the data

■ Enable software upgrades and maintenance without disrupting service to users

Designing a highly available system

9-2 Oracle TimesTen In-Memory Database Replication Guide

In a highly available system, a subscriber database must be able to survive failures that
may affect the master. At a minimum, the master and subscriber need to be on
separate hosts. For some applications, you may want to place the subscriber in an
environment that has a separate power supply. In certain cases, you may need to place
a subscriber at an entirely separate site.

In this chapter, we consider the replication schemes described in "Types of replication
schemes" on page 1-6:

■ Unidirectional

■ Bidirectional split workload

■ Bidirectional distributed workload

■ Propagation

In addition, consider whether you want to replicate a whole database or selected
elements of the database. Also consider the number of subscribers in the replication
scheme. Unidirectional and propagation replication schemes allow you to choose the
number of subscribers.

The rest of this section includes these topics:

■ Considering failover and recovery scenarios

■ Making decisions about performance and recovery tradeoffs

■ Distributing workloads

For more information about using replication to facilitate online upgrades, see
"Performing an online upgrade with replication" and "Performing an online upgrade
with active standby pair replication" in Oracle TimesTen In-Memory Database Installation
Guide.

Considering failover and recovery scenarios
As you plan a replication scheme, consider every failover and recovery scenario. For
example, subscriber failures generally have no impact on the applications connected to
the master databases. Their recovery does not disrupt user service. If a failure occurs
on a master database, you should have a means to redirect the application load to a
subscriber and continue service with no or minimal interruption. This process is
typically handled by a cluster manager or custom software designed to detect failures,
redirect users or applications from the failed database to one of its subscribers, and
manage recovery of the failed database. See Chapter 11, "Managing Database Failover
and Recovery".

When planning failover strategies, consider which subscribers will take on the role of
the master and for which users or applications. Also consider recovery factors. For
example, a failed master must be able to recover its database from its most up-to-date
subscriber, and any subscriber must be able to recover from its master. A bidirectional
scheme that replicates the entire database can take advantage of automatic restoration
of a failed master. See "Automatic catch-up of a failed master database" on page 11-3.

Consider the failure scenario for the unidirectionally replicated database shown in
Figure 9–1. In the case of a master failure, the application cannot access the database
until it is recovered from the subscriber. You cannot switch the application connection
or user load to the subscriber unless you use an ALTER REPLICATION statement to
redefine the subscriber database as the master. See "Replacing a master database" on
page 13-6.

Designing a highly available system

Defining Replication Schemes 9-3

Figure 9–1 Recovering a master in a unidirectional scheme

Figure 9–2 shows a bidirectional distributed workload scheme in which the entire
database is replicated. Failover in this type of replication scheme involves shifting the
users of the application on the failed database to the application on the surviving
database. Upon recovery, the workload can be redistributed to the application on the
recovered database.

Figure 9–2 Recovering a master in a distributed workload scheme

Similarly, the users in a split workload scheme must be shifted from the failed
database to the surviving database. Because replication in a split workload scheme is
not at the database level, you must use an ALTER REPLICATION statement to set a
new master database. See "Replacing a master database" on page 13-6. Upon recovery,
the users can be moved back to the recovered master database.

Propagation replication schemes also require the use of the ALTER REPLICATION
statement to set a new master or a new propagator if the master or propagator fails.
Higher availability is achieved if two propagators are defined in the replication
scheme. See Figure 1–11 for an example of a propagation replication scheme with two
propagators.

Making decisions about performance and recovery tradeoffs
When you design a replication scheme, weigh operational efficiencies against the
complexities of failover and recovery. Factors that may complicate failover and
recovery include the network topology that connects a master with its subscribers and
the complexity of the replication scheme. For example, it is easier to recover a master
that has been fully replicated to a single subscriber than recover a master that has
selected elements replicated to different subscribers.

 Database A
(master)

Database B
(subscriber)

Applications

Users

 Database A Database B

ApplicationsApplications

Users

FAILED

 Database A
(master)

Database B
(subscriber)

Applications

Users

Normal Operation Failure of Master Recovered Master

 Database A Database B

Applications Applications

Users

 Database A Database B

ApplicationsApplications Applications

Users

 Database A Database B

Applications Applications

Users

FAILED

Normal Operation Failure of Master Recovered Master

(master) (master) (master) (master) (master) (master)

Designing a highly available system

9-4 Oracle TimesTen In-Memory Database Replication Guide

You can configure replication to work asynchronously (the default),
"semi-synchronously" with return receipt service, or fully synchronously with return
twosafe service. Selecting a return service provides greater confidence that your data is
consistent on the master and subscriber databases. Your decision to use default
asynchronous replication or to configure return receipt or return twosafe mode
depends on the degree of confidence you require and the performance tradeoff you
are willing to make in exchange.

Table 9–1 summarizes the performance and recover tradeoffs of asynchronous
replication, return receipt service and return twosafe service.

In addition to the performance and recovery tradeoffs between the two return
services, you should also consider the following:

■ Return receipt can be used in more configurations, whereas return twosafe can
only be used in a bidirectional configuration or an active standby pair.

Table 9–1 Performance and recovery tradeoffs

Type of behavior
Asynchronous
replication (default) Return receipt Return twosafe

Commit sequence Each transaction is
committed first on the
master database.

Each transaction is
committed first on the
master database

Each transaction is
committed first on the
subscriber database.

Performance on master Shortest response time and
best throughput because
there is no log wait
between transactions or
before the commit on the
master.

Longer response time and
less throughput than
asynchronous.

The application is blocked
for the duration of the
network round-trip after
commit. Replicated
transactions are more
serialized than with
asynchronous replication,
which results in less
throughput.

Longest response time and
least throughput.

The application is blocked
for the duration of the
network round-trip and
remote commit on the
subscriber before the
commit on the master.
Transactions are fully
serialized, which results in
the least throughput.

Effect of a runtime error Because the transaction is
first committed on the
master database, errors
that occur when
committing on a subscriber
require the subscriber to be
either manually corrected
or destroyed and then
recovered from the master
database.

Because the transaction is
first committed on the
master database, errors
that occur when
committing on a subscriber
require the subscriber to be
either manually corrected
or destroyed and then
recovered from the master
database.

Because the transaction is
first committed on the
subscriber database, errors
that occur when
committing on the master
require the master to be
either manually corrected
or destroyed and then
recovered from the
subscriber database.

Failover after failure of
master

If the master fails and the
subscriber takes over, the
subscriber may be behind
the master and must
reprocess data feeds and be
able to remove duplicates.

If the master fails and the
subscriber takes over, the
subscriber may be behind
the master and must
reprocess data feeds and be
able to remove duplicates.

If the master fails and the
subscriber takes over, the
subscriber is at least up to
date with the master. It is
also possible for the
subscriber to be ahead of
the master if the master
fails before committing a
transaction it had
replicated to the
subscriber.

Defining a replication scheme

Defining Replication Schemes 9-5

■ Return twosafe allows you to specify a "local action" to be taken on the master
database in the event of a timeout or other error encountered when replicating a
transaction to the subscriber database.

A transaction is classified as return receipt or return twosafe when the application
updates a table that is configured for either return receipt or return twosafe. Once a
transaction is classified as either return receipt or return twosafe, it remains so, even if
the replication scheme is altered before the transaction completes.

For more information about return services, see "Using a return service" on page 9-12.

Distributing workloads
Consider configuring the databases to distribute application workloads and make the
best use of a limited number of servers. For example, it may be efficient and
economical to configure the databases in a bidirectional distributed workload
replication scheme so that each serves as both master and subscriber, rather than as
separate master and subscriber databases. However, a distributed workload scheme
works best with applications that primarily read from the databases. Implementing a
distributed workload scheme for applications that frequently write to the same
elements in a database may diminish performance and require that you implement a
solution to prevent or manage update conflicts, as described in Chapter 14, "Resolving
Replication Conflicts".

Defining a replication scheme
After you have designed your replication scheme, use the CREATE REPLICATION
SQL statement to apply the scheme to your databases. You must have the ADMIN
privilege to use the CREATE REPLICATION statement.

Table 9–2 shows the components of a replication scheme and identifies the clauses
associated with the topics in this chapter. The complete syntax for the CREATE
REPLICATION statement is provided in Oracle TimesTen In-Memory Database SQL
Reference.

Table 9–2 Components of a replication scheme

Component See...

CREATE REPLICATION Owner.SchemeName "Owner of the replication scheme
and replicated objects" on page 9-6

ELEMENT ElementName ElementType "Defining replication elements" on
page 9-7

[CheckConflicts] "Checking for replication conflicts
on table elements" on page 9-11

{MASTER|PROPAGATOR} DatabaseName ON
"HostName"

"Database names" on page 9-6

[TRANSMIT {NONDURABLE|DURABLE}] "Setting transmit durability on data
store elements" on page 9-11

SUBSCRIBER DatabaseName ON "HostName" "Database names" on page 9-6

[ReturnServiceAttribute] "Using a return service" on
page 9-12

INCLUDE|EXCLUDE "Defining the DATASTORE
element" on page 9-8

Defining a replication scheme

9-6 Oracle TimesTen In-Memory Database Replication Guide

The replication scheme used by a database persists across system reboots. Modify a
replication scheme by using the ALTER REPLICATION statement. See Chapter 13,
"Altering Replication".

Owner of the replication scheme and replicated objects
The replication scheme and the replicated objects must be owned by the same user on
every database in a replication scheme. To ensure that there is a common owner across
all databases, you should explicitly specify the user and replication scheme in the
CREATE REPLICATION statement.

For example, create a replication scheme named repscheme owned by user repl.
The first line of the CREATE REPLICATION statement for repscheme is:

CREATE REPLICATION rep1.repscheme

Database names
These are the roles of the databases in a replication scheme:

■ Master: Applications update the master database. The master sends the updates to
the propagator or to the subscribers directly.

■ Propagator: The propagator database receives updates from the master database
and sends them to subscriber databases.

■ Subscriber: Subscribers receive updates from the propagator or the master.

Before you define the replication scheme, you need to define the data source names
(DSNs) for the databases in the replication scheme. On UNIX platforms, create an
odbc.ini file. On Windows, use the ODBC Administrator to name the databases and
set connection attributes. See "Step 1: Create the DSNs for the master and the
subscriber" on page 2-5 for an example.

Each database "name" specified in a replication scheme must match the prefix of the
database file name without the path specified for the DataStore data store attribute
in the DSN definition. Use the same name for both the DataStore and Data Source
Name data store attributes in each DSN definition. If the database path is
directory/subdirectory/foo.ds0, then foo is the database name that you
should use. For example, this entry in an odbc.ini file shows a Data Source Name
(DSN) of masterds, while the DataStore value shows the path for masterds:

[masterds]
DataStore=/tmp/masterds
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

STORE DatabaseName DataStoreAttributes "Setting STORE attributes" on
page 9-16

[NetworkOperation] "Configuring network operations"
on page 9-26

Note: Naming errors in your CREATE REPLICATION statement are
often hard to troubleshoot, so take the time to check and double-check
the element, database, and host names for mistakes.

Table 9–2 (Cont.) Components of a replication scheme

Component See...

Defining replication elements

Defining Replication Schemes 9-7

Table requirements and restrictions for replication schemes
The name and owner of replicated tables participating in the replication scheme must
be identical on the master and subscriber databases. The column definitions of
replicated tables participating in the replication scheme must be identical on the
master and subscriber databases unless you specify a TABLE DEFINITION
CHECKING value of RELAXED in the CREATE REPLICATION statement. If you specify
RELAXED, then the tables must have the same key definition, number of columns and
column data types. See "Replicating tables with different definitions" on page 9-25.

Replicated tables must have one of the following:

■ A primary key

■ A unique index over non-nullable columns

Replication uses the primary key or unique index to uniquely identify each row in the
replicated table. Replication always selects the first usable index that turns up in a
sequential check of the table's index array. If there is no primary key, replication
selects the first unique index without NULL columns it encounters. The selected index
on the replicated table in the master database must also exist on its counterpart table in
the subscriber.

Replicated tables have these data type restrictions:

■ VARCHAR2, NVARCHAR2, VARBINARY and TT_VARCHAR columns in replicated
tables is limited to a size of 4 megabytes. For a VARCHAR2 column, the maximum
length when using character length semantics depends on the number of bytes
each character occupies when using a particular database character set. For
example, if the character set requires four bytes for each character, the maximum
possible length is one million characters. For an NVARCHAR2 column, which
requires two bytes for each character, the maximum length when using character
length semantics is two million characters.

■ Columns with the BLOB data type in replicated tables are limited to a size of 16
megabytes. Columns with the CLOB or NCLOB data type in replicated tables are
limited to a size of 4 megabytes.

■ A primary key column cannot have a LOB data type.

You cannot replicate tables with compressed columns.

If these requirements and restrictions present difficulties, you may want to consider
using the Transaction Log API (XLA) as a replication mechanism. See "Using XLA as a
replication mechanism" in Oracle TimesTen In-Memory Database C Developer's Guide.

Defining replication elements
A replication scheme consists of one or more ELEMENT descriptions that contain the
name of the element, its type (DATASTORE, TABLE or SEQUENCE), the master database
on which it is updated, and the subscriber databases to which the updates are
replicated.

If you want to replicate a database with cache groups, see Chapter 5, "Administering
an Active Standby Pair with Cache Groups".

Note: The keys on replicated tables are transmitted in each update
record to the subscribers. Smaller keys are transmitted more
efficiently.

Defining replication elements

9-8 Oracle TimesTen In-Memory Database Replication Guide

These are restrictions on elements:

■ Do not include a specific object (table, sequence or database) in more than one
element description.

■ Do not define the same element in the role of both master and propagator.

■ An element must include the database on the current host as either the master,
subscriber or propagator.

■ Element names must be unique within a replication scheme.

The correct way to define elements in a multiple subscriber scheme is described in
"Multiple subscriber schemes with return services and a log failure threshold" on
page 9-28. The correct way to propagate elements is described in "Propagation
scheme" on page 9-30.

The name of each element in a scheme can be used to identify the element if you
decide later to drop or modify the element by using the ALTER REPLICATION
statement.

You can add tables, sequences and databases to an existing replication scheme. See
"Altering a replication scheme" on page 13-1. You can drop a table or sequence from a
database that is part of a replication scheme after you exclude the table or sequence
from the replication scheme. See "Dropping a table or sequence from a replication
scheme" on page 13-4.

The rest of this section includes the following topics:

■ Defining the DATASTORE element

■ Defining table elements

■ Replicating tables with foreign key relationships

■ Replicating sequences

■ Views and materialized views in a replicated database

Defining the DATASTORE element
To replicate the entire contents of the master database (masterds) to the subscriber
database (subscriberds), the ELEMENT description (named ds1) might look like the
following:

ELEMENT ds1 DATASTORE
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"

Identify a database host using the host name returned by the hostname operating
system command. It is good practice to surround a host name with double quotes.

You cannot replicate a temporary database.

You can choose to exclude certain tables and sequences from the DATASTORE element
by using the EXCLUDE TABLE and EXCLUDE SEQUENCE clauses of the CREATE
REPLICATION statement. When you use the EXCLUDE clauses, the entire database is
replicated to all subscribers in the element except for the objects that are specified in the
EXCLUDE clauses. Use only one EXCLUDE TABLE and one EXCLUDE SEQUENCE
clause in an element description. For example, this element description excludes two
tables and one sequence:

ELEMENT ds1 DATASTORE
 MASTER masterds ON "system1"

Defining replication elements

Defining Replication Schemes 9-9

 SUBSCRIBER subscriberds ON "system2"
 EXCLUDE TABLE ttuser.tab1, ttuser.tab2
 EXCLUDE SEQUENCE ttuser.seq1

You can choose to include only certain tables and sequences in the database by using
the INCLUDE TABLE and INCLUDE SEQUENCE clauses of the CREATE
REPLICATION statement. When you use the INCLUDE clauses, only the objects that are
specified in the INCLUDE clauses are replicated to each subscriber in the element. Use
only one INCLUDE TABLE and one INCLUDE SEQUENCE clause in an element
description. For example, this element description includes one table and two
sequences:

ELEMENT ds1 DATASTORE
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"
 INCLUDE TABLE ttuser.tab3
 INCLUDE SEQUENCE ttuser.seq2, ttuser.seq3

Defining table elements
To replicate the ttuser.tab1 and ttuser.tab2 tables from a master database
(named masterds and located on a host named system1) to a subscriber database
(named subscriberds on a host named system2), the ELEMENT descriptions
(named a and b) might look like the following:

ELEMENT a TABLE ttuser.tab1
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"
ELEMENT b TABLE ttuser.tab2
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"

For requirements for tables in replication schemes, see "Table requirements and
restrictions for replication schemes" on page 9-7.

Replicating tables with foreign key relationships
You may choose to replicate all or a subset of tables that have foreign key relationships
with one another. However, if the foreign key relationships have been configured with
ON DELETE CASCADE, then you must configure replication to replicate all of the
tables, either by configuring the replication scheme with a DATASTORE element that
does not exclude any of the tables, or by configuring the scheme with a TABLE element
for every table that is involved in the relationship.

It is not possible to add a table with a foreign key relationship configured with ON
DELETE CASCADE to a pre-existing replication scheme using ALTER REPLICATION.
Instead, you must drop the replication scheme, create the new table with the foreign
key relationship, and then create a new replication scheme replicating all of the related
tables.

Replicating sequences
Sequences are replicated unless you exclude them from the replication scheme or
unless they have the CYCLE attribute. Replication of sequences is optimized by
reserving a range of sequence numbers on the standby database each time a sequence
is updated on the active database. Reserving a range of sequence numbers reduces the
number of updates to the transaction log. The range of sequence numbers is called a

Defining replication elements

9-10 Oracle TimesTen In-Memory Database Replication Guide

cache. Sequence updates on the active database are replicated only when they are
followed by or used in replicated transactions.

Consider a sequence my.seq with a MINVALUE of 1, an INCREMENT of 1 and the
default Cache of 20. The very first time that you use my.seq.NEXTVAL, the current
value of the sequence on the master database is changed to 2, and a new current value
of 21 (20+1) is replicated to the subscriber. The next 19 references to
my.seq.NEXTVAL on the master database result in no new current value being
replicated, because the current value of 21 on the subscriber database is still ahead of
the current value on the master. On the twenty-first reference to my.seq.NEXTVAL, a
new current value of 41 (21+20) is transmitted to the subscriber database because the
subscriber's previous current value of 21 is now behind the value of 22 on the master.

Sequence replication has these restrictions:

■ Sequences with the CYCLE attribute cannot be replicated.

■ The definition of the replicated sequence on each peer database must be identical.

■ No conflict checking is performed on sequences. If you make updates to sequences
in both databases in a bidirectional replication configuration without using the
RETURN TWOSAFE service, it is possible for both sequences to return the identical
NEXTVAL.

If you need to use sequences in a bidirectional replication scheme where updates may
occur on either peer, you may instead use a nonreplicated sequence with different
MINVALUE and MAXVALUE attributes on each database to avoid conflicts. For example,
you may create sequence my.seq on database DS1 with a MINVALUE of 1 and a
MAXVALUE of 100, and the same sequence on DS2 with a MINVALUE of 101 and a
MAXVALUE of 200. Then, if you configure DS1 and DS2 with a bidirectional replication
scheme, you can make updates to either database using the sequence my.seq with the
guarantee that the sequence values never conflict. Be aware that if you are planning to
use ttRepAdmin -duplicate to recover from a failure in this configuration, you
must drop and then re-create the sequence with a new MINVALUE and MAXVALUE after
you have performed the duplicate operation.

Operations on sequences such as SELECT my.seq.NEXTVAL FROM sys.dual,
while incrementing the sequence value, are not replicated until they are followed by
transactions on replicated tables. A side effect of this behavior is that these sequence
updates are not purged from the log until followed by transactions on replicated
tables. This causes ttRepSubscriberWait and ttRepAdmin -wait to fail when
only these sequence updates are present at the end of the log.

To replicate the ttuser.seq sequence from a master database (named masterds
and located on a host named system1) to a subscriber database (named
subscriberds on a host named system2), the element description (named a) might
look like the following:

ELEMENT a SEQUENCE ttuser.seq
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"

Views and materialized views in a replicated database
A materialized view is a summary of data selected from one or more TimesTen tables,
called detail tables. Although you cannot replicate materialized views directly, you
can replicate their underlying detail tables in the same manner as you would replicate
regular TimesTen tables.

Setting transmit durability on data store elements

Defining Replication Schemes 9-11

The detail tables on the master and subscriber databases can be referenced by
materialized views. However, TimesTen replication verifies only that the replicated
detail tables have the same structure on both the master and subscriber. It does not
enforce that the materialized views are the same on each database.

If you replicate an entire database containing a materialized or nonmaterialized view
as a DATASTORE element, only the detail tables associated with the view are
replicated. The view itself is not replicated. A matching view can be defined on the
subscriber database, but is not required. If detail tables are replicated, TimesTen
automatically updates the corresponding view.

Materialized views defined on replicated tables may result in replication failures or
inconsistencies if the materialized view is specified so that overflow or underflow
conditions occur when the materialized view is updated.

Checking for replication conflicts on table elements
When databases are configured for bidirectional replication, there is a potential for
replication conflicts to occur if the same table row in two or more databases is
independently updated at the same time.

Such conflicts can be detected and resolved on a table-by-table basis by including
timestamps in the replicated tables and configuring the replication scheme with the
optional CHECK CONFLICTS clause in each table's element description.

See Chapter 14, "Resolving Replication Conflicts" for a complete discussion on
replication conflicts and how to configure the CHECK CONFLICTS clause in the
CREATE REPLICATION statement.

Setting transmit durability on data store elements
A master database configured for asynchronous or return receipt replication is durable
by default. This means that log records are committed to disk when transactions are
committed. The master database can be set to nondurable by including the TRANSMIT
NONDURABLE clause in the element description.

Transaction records in the master database log buffer are, by default, flushed to disk
before they are forwarded to subscribers. If the entire master database is replicated
(ELEMENT is of type DATASTORE), you can improve replication performance by
eliminating the master's flush-log-to-disk operation from the replication cycle. This is
done by including a TRANSMIT NONDURABLE clause in the element description. The
TRANSMIT setting has no effect on the subscriber. The transaction records on the
subscriber database are always flushed to disk.

Master databases configured for return twosafe replication are nondurable by default
and cannot be made durable. Setting TRANSMIT DURABLE on a database that is
configured for return twosafe replication has no effect on return twosafe transactions.

Example 9–1 Replicating the entire master database with TRANSMIT NONDURABLE

To replicate the entire contents of the master database (masterds) to the subscriber
database (subscriberds) and to eliminate the flush-log-to-disk operation, your
element description (named a) might look like the following:

ELEMENT a DATASTORE
 MASTER masterds ON "system1"
 TRANSMIT NONDURABLE
 SUBSCRIBER subscriberds ON "system2"

Using a return service

9-12 Oracle TimesTen In-Memory Database Replication Guide

In general, if a master database fails, you have to initiate the ttRepAdmin
-duplicate operation described in "Recovering a failed database" on page 11-5 to
recover the failed master from the subscriber database. This is always true for a master
database configured with TRANSMIT DURABLE.

A database configured as TRANSMIT NONDURABLE is recovered automatically by the
subscriber replication agent if it is configured in the specific type of bidirectional
scheme described in "Automatic catch-up of a failed master database" on page 11-3.
Otherwise, you must follow the procedures described in "Recovering nondurable
databases" on page 11-7 to recover a failed nondurable database.

Using a return service
You can configure your replication scheme with a return service to ensure a higher
level of confidence that replicated data is consistent on both the master and subscriber
databases. This section describes how to configure and manage the return receipt and
return twosafe services.

You can specify a return service for table elements and database elements for any
subscriber defined in a CREATE REPLICATION or ALTER REPLICATION statement.

Example 9–2 shows separate SUBSCRIBER clauses that can define different return
service attributes for SubDatabase1 and SubDatabase2.

Example 9–2 Different return services for each subscriber

CREATE REPLICATION Owner.SchemeName
 ELEMENT ElementNameElementType
 MASTER DatabaseName ON "HostName"
 SUBSCRIBER SubDatabase1 ON "HostName" ReturnServiceAttribute1
 SUBSCRIBER SubDatabase2 ON "HostName" ReturnServiceAttribute2;

Alternatively, you can specify the same return service attribute for all of the
subscribers defined in an element. Example 9–3 shows the use of a single
SUBSCRIBER clause that defines the same return service attributes for both
SubDatabase1 and SubDatabase2.

Example 9–3 Same return service for all subscribers

CREATE REPLICATION Owner.SchemeName
 ELEMENT ElementNameElementType
 MASTER DatabaseName ON "HostName"
 SUBSCRIBER SubDatabase1 ON "HostName",
 SubDatabase2 ON "HostName"
 ReturnServiceAttribute;

These sections describe the return service attributes:

■ RETURN RECEIPT

■ RETURN RECEIPT BY REQUEST

■ RETURN TWOSAFE

■ RETURN TWOSAFE BY REQUEST

■ NO RETURN

Using a return service

Defining Replication Schemes 9-13

RETURN RECEIPT
TimesTen provides an optional return receipt service to loosely couple or synchronize
your application with the replication mechanism.

Specify the RETURN RECEIPT attribute to enable the return receipt service for the
subscribers listed in the SUBSCRIBER clause of an element description. With return
receipt enabled, when the application commits a transaction for an element on the
master database, the application remains blocked until the subscriber acknowledges
receipt of the transaction update. If the master is replicating the element to multiple
subscribers, the application remains blocked until all of the subscribers have
acknowledged receipt of the transaction update.

For example replication schemes that use return receipt services, see Example 9–24
and Example 9–25.

Example 9–4 RETURN RECEIPT

To confirm that all transactions committed on the tab table in the master database
(masterds) are received by the subscriber (subscriberds), the element description
(e) might look like the following:

ELEMENT e TABLE tab
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"
 RETURN RECEIPT

If any of the subscribers are unable to acknowledge receipt of the transaction within a
configurable timeout period, the application receives a tt_ErrRepReturnFailed
(8170) warning on its commit request. You can use the ttRepXactStatus procedure
to check on the status of a return receipt transaction. See "Checking the status of return
service transactions" on page 12-15 for more information on the return service timeout
period.

You can also configure the replication agent to disable the return receipt service after a
specific number of timeouts. See "Managing return service timeout errors and
replication state changes" on page 9-18 for details.

The return receipt service is disabled by default if replication is stopped. See
"RETURN SERVICES {ON | OFF} WHEN REPLICATION STOPPED" on page 9-20 for
details.

RETURN RECEIPT BY REQUEST
RETURN RECEIPT enables notification of receipt for all transactions. You can use
RETURN RECEIPT BY REQUEST to enable receipt notification only for specific
transactions identified by your application.

If you specify RETURN RECEIPT BY REQUEST for a subscriber, you must use the
ttRepSyncSet built-in procedure to enable the return receipt service for a
transaction. The call to enable the return receipt service must be part of the transaction
(autocommit must be off).

Example 9–5 RETURN RECEIPT BY REQUEST

To enable confirmation that specific transactions committed on the tab table in the
master database (masterds) are received by the subscriber (subscriberds), the
element description (e) might look like:

ELEMENT e TABLE tab
 MASTER masterds ON "system1"

Using a return service

9-14 Oracle TimesTen In-Memory Database Replication Guide

 SUBSCRIBER subscriberds ON "system2"
 RETURN RECEIPT BY REQUEST

Before committing a transaction that requires receipt notification, call the
ttRepSyncSet built-in procedure to request the return services and to set the
timeout period to 45 seconds:

Command> CALL ttRepSyncSet(0x01, 45, NULL);

If any of the subscribers are unable to acknowledge receipt of the transaction update
within a configurable timeout period, the application receives a tt_
ErrRepReturnFailed (8170) warning on its commit request. See "Setting the return
service timeout period" on page 9-18.

You can use the ttRepSyncGet built-in procedure to check if a return service is
enabled and obtain the timeout value. For example:

Command> CALL ttRepSyncGet();
< 01, 45, 1>
1 row found.

RETURN TWOSAFE BY REQUEST
RETURN TWOSAFE enables notification of commit on the subscriber for all
transactions. You can use RETURN TWOSAFE BY REQUEST to enable notification of
subscriber commit only for specific transactions identified by the application.

If you specify RETURN TWOSAFE BY REQUEST for a subscriber, you must use the
ttRepSyncSet procedure to enable the return twosafe service for a transaction. The
call to enable the return twosafe service must be part of the transaction (autocommit
must be off).

The ALTER TABLE statement cannot be used to alter a replicated table that is part of a
RETURN TWOSAFE BY REQUEST transaction. If DDLCommitBehavior=0 (the
default), the ALTER TABLE operation succeeds because a commit is performed before
the ALTER TABLE operation, resulting in the ALTER TABLE operation executing in a
new transaction which is not part of the RETURN TWOSAFE BY REQUEST transaction.
If DDLCommitBehavior=1, the ALTER TABLE operation results in error 8051.

Example 9–6 RETURN TWOSAFE BY REQUEST

To enable confirmation that specific transactions committed on the master database
(databaseA) are also committed by the subscriber (databaseB), the element
description (a) might look like:

ELEMENT a DATASTORE
 MASTER databaseA ON "system1"
 SUBSCRIBER databaseB ON "system2"
 RETURN TWOSAFE BY REQUEST;

Before calling commit for a transaction that requires confirmation of commit on the
subscriber, call the ttRepSyncSet built-in procedure to request the return service, set
the timeout period to 45 seconds, and specify no action (1) in the event of a timeout
error:

Command> CALL ttRepSyncSet(0x01, 45, 1);

In this example, if the subscriber is unable to acknowledge commit of the transaction
within the timeout period, the application receives a tt_ErrRepReturnFailed

Using a return service

Defining Replication Schemes 9-15

(8170) warning on its commit request. The application can then chose how to handle
the timeout. See "Setting the return service timeout period" on page 9-18.

You can use the ttRepSyncGet built-in procedure to check if a return service is
enabled and obtain the timeout value. For example:

Command> CALL ttRepSyncGet();
< 01, 45, 1>
1 row found.

RETURN TWOSAFE
The return twosafe service ensures that each replicated transaction is committed on
the subscriber database before it is committed on the master database. If replication is
unable to verify the transaction has been committed on the subscriber, it returns
notification of the error. Upon receiving an error, the application can either take a
unique action or fall back on preconfigured actions, depending on the type of failure.

The return twosafe service is intended to be used in replication schemes where two
databases must stay synchronized. One database has an active role, while the other
database has a standby role but must be ready to assume an active role at any
moment. Use return twosafe with a bidirectional replication scheme with exactly two
databases.

To enable the return twosafe service for the subscriber, specify the RETURN TWOSAFE
attribute in the SUBSCRIBER clause in the CREATE REPLICATION or ALTER
REPLICATION statement.

Example 9–7 RETURN TWOSAFE

To confirm all transactions committed on the master database (databaseA) are also
committed by the subscriber (databaseB), the element description (a) might look like
the following:

ELEMENT a DATASTORE
 MASTER databaseA ON "system1"
 SUBSCRIBER databaseB ON "system2"
 RETURN TWOSAFE

The entire CREATE REPLICATION statement that specifies both databaseA and
databaseB in a bidirectional configuration with RETURN TWOSAFE might look like
the following:

CREATE REPLICATION bidirect
ELEMENT a DATASTORE
 MASTER databaseA ON "system1"
 SUBSCRIBER databaseB ON "system2"
 RETURN TWOSAFE
ELEMENT b DATASTORE
 MASTER databaseB ON "system2"
 SUBSCRIBER databaseA ON "system1"
 RETURN TWOSAFE;

When replication is configured with RETURN TWOSAFE, you must disable autocommit
mode

When the application commits a transaction on the master database, the application
remains blocked until the subscriber acknowledges it has successfully committed the
transaction. Initiating identical updates or deletes on both databases can lead to
deadlocks in commits that can be resolved only by stopping the processes.

Setting STORE attributes

9-16 Oracle TimesTen In-Memory Database Replication Guide

If the subscriber is unable to acknowledge commit of the transaction update within a
configurable timeout period, your application receives a tt_ErrRepReturnFailed
(8170) warning on its commit request. See "Setting the return service timeout period"
on page 9-18.

NO RETURN
Use the NO RETURN attribute to explicitly disable the return receipt or return twosafe
service. NO RETURN is the default condition. This attribute is typically set in ALTER
REPLICATION statements. See Example 13–13.

Setting STORE attributes
Table 9–3 lists the optional STORE parameters for the CREATE REPLICATION and
ALTER REPLICATION statements.

Table 9–3 STORE attribute descriptions

STORE attribute Description

DISABLE RETURN
{SUBSCRIBER|ALL}
NumFailures

Set the return service policy so that return service blocking
is disabled after the number of timeouts specified by
NumFailures.

See "Establishing return service failure/recovery policies"
on page 9-19.

RETURN SERVICES {ON|OFF}
WHEN REPLICATION STOPPED

Set return services on or off when replication is disabled.

See "Establishing return service failure/recovery policies"
on page 9-19.

RESUME RETURN
Milliseconds

If DISABLE RETURN has disabled return service blocking,
this attribute sets the policy for re-enabling the return
service.

See "Establishing return service failure/recovery policies"
on page 9-19.

RETURN WAIT TIME Seconds Specifies the number of seconds to wait for return service
acknowledgement. A value of 0 means that there is no
waiting. The default value is 10 seconds.

The application can override this timeout setting by using
the returnWait parameter in the ttRepSyncSet built-in
procedure.

See "Setting the return service timeout period" on
page 9-18.

DURABLE COMMIT {ON|OFF} Overrides the DurableCommits general connection
attribute setting. DURABLE COMMIT ON enables durable
commits regardless of whether the replication agent is
running or stopped.

See "DURABLE COMMIT" on page 9-22.

Setting STORE attributes

Defining Replication Schemes 9-17

The FAILTHRESHOLD and TIMEOUT attributes can be unique to a specific replication
scheme definition. This means these attribute settings can vary if you have applied
different replication scheme definitions to your replicated databases. This is not true
for any of the other attributes, which must be the same across all replication scheme
definitions. For example, setting the PORT attribute for one scheme sets it for all
schemes.

For an example replication scheme that uses a STORE clause to set the
FAILTHRESHOLD attribute, see Example 9–24.

LOCAL COMMIT ACTION {NO
ACTION|ACTON}

Specify the default action to be taken for a return service
transaction in the event of a timeout. The options are:

NO ACTION - On timeout, the commit function returns to
the application, leaving the transaction in the same state it
was in when it entered the commit call, with the exception
that the application is not able to update any replicated
tables. The application can reissue the commit. This is the
default.

COMMIT- On timeout, the commit function attempts to
perform a commit to end the transaction locally. No more
operations are possible on the same transaction.

This default setting can be overridden for specific
transactions by using the localAction parameter in the
ttRepSyncSet procedure.

See "LOCAL COMMIT ACTION" on page 9-23.

COMPRESS TRAFFIC {ON|OFF} Compress replicated traffic to reduce the amount of
network bandwidth used.

See "Compressing replicated traffic" on page 9-23.

PORT PortNumber Set the port number used by subscriber databases to listen
for updates from a master.

If no PORT attribute is specified, the TimesTen daemon
dynamically selects the port. While static port assignment
is allowed by TimesTen, dynamic port allocation is
recommended.

See "Port assignments" on page 9-24.

TIMEOUT Seconds Set the maximum number of seconds that the replication
agent waits for a response from its database.

FAILTHRESHOLD Set the log failure threshold.

 See "Setting the log failure threshold" on page 9-24.

CONFLICT REPORTING
{SUSPEND|RESUME} AT Value

Specify the number of replication conflicts per second at
which conflict reporting is suspended, and the number of
conflicts per second at which conflict reporting resumes.

See Chapter 14, "Resolving Replication Conflicts".

TABLE DEFINITION CHECKING
{EXACT|RELAXED}

Specify the type of table definition checking:

■ EXACT - The tables must be identical on master and
subscriber. This is the default.

■ RELAXED - The tables must have the same key
definition, number of columns and column data types.

See "Replicating tables with different definitions" on
page 9-25.

Table 9–3 (Cont.) STORE attribute descriptions

STORE attribute Description

Setting STORE attributes

9-18 Oracle TimesTen In-Memory Database Replication Guide

Setting the return service timeout period
If your replication scheme is configured with one of the return services described in
"Using a return service" on page 9-12, a timeout occurs if any of the subscribers are
unable to send an acknowledgement back to the master within the time period
specified by RETURN WAIT TIME.

The default return service timeout period is 10 seconds. You can specify a different
return service timeout period by:

■ Configuring RETURN WAIT TIME in the CREATE REPLICATION or ALTER
REPLICATION statement. A RETURN WAIT TIME of 0 indicates no waiting.

■ Calling the ttRepSyncSet procedure with a new returnWait parameter

Once set, the timeout period applies to all subsequent return service transactions until
you either reset the timeout period or terminate the application session. The timeout
setting applies to all return services for all subscribers.

A return service may time out because of a replication failure or because replication is
so far behind that the return service transaction times out before it is replicated.
However, unless there is a simultaneous replication failure, failure to obtain a return
service confirmation from the subscriber does not mean the transaction has not been or
will not be replicated.

You can set other STORE attributes to establish policies that automatically disable
return service blocking in the event of excessive timeouts and re-enable return service
blocking when conditions improve. See "Managing return service timeout errors and
replication state changes" on page 9-18.

Example 9–8 Setting the timeout period for both databases in bidirectional replication
scheme

To set the timeout period to 30 seconds for both bidirectionally replicated databases,
databaseA and databaseB, in the bidirect replication scheme, the CREATE
REPLICATION statement might look like the following:

CREATE REPLICATION bidirect
ELEMENT a DATASTORE
 MASTER databaseA ON "system1"
 SUBSCRIBER databaseB ON "system2"
 RETURN TWOSAFE
ELEMENT b DATASTORE
 MASTER databaseB ON "system2"
 SUBSCRIBER databaseA ON "system1"
 RETURN TWOSAFE
STORE databaseA RETURN WAIT TIME 30
STORE databaseB RETURN WAIT TIME 30;

Example 9–9 Resetting the timeout period

Use the ttRepSyncSet built-in procedure to reset the timeout period to 45 seconds.
To avoid resetting the requestReturn and localAction values, specify NULL:

Command> CALL ttRepSyncSet(NULL, 45, NULL);

Managing return service timeout errors and replication state changes
The replication state can be reset to stop by a user or by the master replication agent
in the event of a subscriber failure. A subscriber may be unable to acknowledge a
transaction that makes use of a return service and may time out with respect to the
master. If any of the subscribers are unable to acknowledge the transaction update

Setting STORE attributes

Defining Replication Schemes 9-19

within the timeout period, the application receives an errRepReturnFailed
warning on its commit request.

The default return service timeout period is 10 seconds. You can specify a different
return service timeout period by:

■ Configuring the RETURN WAIT TIME attribute in the STORE clause of the CREATE
REPLICATION or ALTER REPLICATION statement

■ Calling ttRepSyncSet procedure with a new returnWait parameter

A return service may time out or fail because of a replication failure or because
replication is so far behind that the return service transaction times out before it is
replicated. However, unless there is a simultaneous replication failure, failure to
obtain a return service confirmation from the subscriber does not necessarily mean the
transaction has not been or will not be replicated.

This section describes how to detect and respond to timeouts on return service
transactions. The main topics are:

■ When to manually disable return service blocking

■ Establishing return service failure/recovery policies

When to manually disable return service blocking
You may want respond in some manner if replication is stopped or return service
timeout failures begin to adversely impact the performance of the replicated system.
Your "tolerance threshold" for return service timeouts may depend on the historical
frequency of timeouts and the performance/availability equation for your particular
application, both of which should be factored into your response to the problem.

When using the return receipt service, you can manually respond by:

■ Using ALTER REPLICATION to make changes to the replication scheme to disable
return receipt blocking for a particular subscriber. If you decide to disable return
receipt blocking, your decision to re-enable it depends on your confidence level
that the return receipt transaction is no longer likely to time out.

■ Calling the ttDurableCommit procedure to durably commit transactions on the
master that you can no longer verify as being received by the subscriber.

An alternative to manually responding to return service timeout failures is to establish
return service failure and recovery policies in your replication scheme. These policies
direct the replication agents to detect changes to the replication state and to keep track
of return service timeouts and then automatically respond in some predefined
manner.

Establishing return service failure/recovery policies
An alternative to manually responding to return service timeout failures is to establish
return service failure and recovery policies in your replication scheme. These policies
direct the replication agents to detect changes to the replication state and to keep track
of return service timeouts and then automatically respond in some predefined
manner.

The following attributes in the CREATE REPLICATION or ALTER REPLICATION
statement set the failure/recovery policies when using a RETURN RECEIPT or
RETURN TWOSAFE service:

■ RETURN SERVICES {ON | OFF} WHEN REPLICATION STOPPED

■ DISABLE RETURN

Setting STORE attributes

9-20 Oracle TimesTen In-Memory Database Replication Guide

■ RESUME RETURN

■ DURABLE COMMIT

■ LOCAL COMMIT ACTION

The policies set by these attributes are applicable for the life of the database or until
changed. However, the replication agent must be running to enforce these policies.

RETURN SERVICES {ON | OFF} WHEN REPLICATION STOPPED The RETURN SERVICES
{ON|OFF} WHEN REPLICATION STOPPED attribute determines whether a return
receipt or return twosafe service continues to be enabled or is disabled when
replication is stopped. "Stopped" in this context means that either the master
replication agent is stopped (for example, by ttAdmin -repStop master) or the
replication state of the subscriber database is set to stop or pause with respect to the
master database (for example, by ttRepAdmin -state stop subscriber). A
failed subscriber that has exceeded the specified FAILTHRESHOLD value is set to the
failed state, but is eventually set to the stop state by the master replication agent.

RETURN SERVICES OFF WHEN REPLICATION STOPPED disables the return service
when replication is stopped and is the default when using the RETURN RECEIPT
service. RETURN SERVICES ON WHEN REPLICATION STOPPED allows the return
service to continue to be enabled when replication is stopped and is the default when
using the RETURN TWOSAFE service.

Example 9–10 RETURN SERVICES ON WHEN REPLICATION STOPPED

Configure the CREATE REPLICATION statement to replicate updates from the
masterds database to the subscriber1 database. The CREATE REPLICATION
statement specifies the use of RETURN RECEIPT and RETURN SERVICES ON WHEN
REPLICATION STOPPED.

CREATE REPLICATION myscheme
ELEMENT e TABLE tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriber1 ON "server2"
 RETURN RECEIPT
 STORE masterds ON "server1"
 RETURN SERVICES ON WHEN REPLICATION STOPPED;

While the application is committing updates to the master, ttRepAdmin is used to set
subscriber1 to the stop state:

ttRepAdmin -dsn masterds -receiver -name subscriber1 -state stop

The application continues to wait for return receipt acknowledgements from
subscriber1 until the replication state is reset to start and it receives the
acknowledgment:

ttRepAdmin -dsn masterds -receiver -name subscriber1 -state start

Note: A subscriber may become unavailable for a period of time that
exceeds the timeout period specified by RETURN WAIT TIME but still
be considered by the master replication agent to be in the start state.
Failure policies related to timeouts are set by the DISABLE RETURN
attribute.

Setting STORE attributes

Defining Replication Schemes 9-21

DISABLE RETURN When a DISABLE RETURN value is set, the database keeps track of
the number of return receipt or return twosafe transactions that have exceeded the
timeout period set by RETURN WAIT TIME. If the number of timeouts exceeds the
maximum value set by DISABLE RETURN, the applications revert to a default
replication cycle in which they no longer wait for subscribers to acknowledge the
replicated updates.

You can set DISABLE RETURN SUBSCRIBER to establish a failure policy to disable
return service blocking for only those subscribers that have timed out, or DISABLE
RETURN ALL to establish a policy to disable return service blocking for all subscribers.
You can use the ttRepSyncSubscriberStatus built-in procedure or the
ttRepReturnTransitionTrap SNMP trap to determine whether a particular
subscriber has been disabled by the DISABLE RETURN failure policy.

The DISABLE RETURN failure policy is enabled only when the replication agent is
running. If DISABLE RETURN is specified but RESUME RETURN is not specified, the
return services remain off until the replication agent for the database has been
restarted. You can cancel this failure policy by stopping the replication agent and
specifying either DISABLE RETURN SUBSCRIBER or DISABLE RETURN ALL with a
zero value for NumFailures. The count of timeouts to trigger the failure policy is
reset either when you restart the replication agent, when you set the DISABLE
RETURN value to 0, or when return service blocking is re-enabled by RESUME RETURN.

DISABLE RETURN maintains a cumulative timeout count for each subscriber. If there
are multiple subscribers and you set DISABLE RETURN SUBSCRIBER, the replication
agent disables return service blocking for the first subscriber that reaches the timeout
threshold. If one of the other subscribers later reaches the timeout threshold, the
replication agent disables return service blocking for that subscriber also.

Example 9–11 DISABLE RETURN SUBSCRIBER

Configure the CREATE REPLICATION statement to replicate updates from the
masterds database to the databases, subscriber1 and subscriber2. The CREATE
REPLICATION statement specifies the use of RETURN RECEIPT and DISABLE
RETURN SUBSCRIBER with a NumFailures value of 5. The RETURN WAIT TIME is
set to 30 seconds.

CREATE REPLICATION myscheme
ELEMENT e TABLE tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriber1 ON "server2",
 subscriber2 ON "server3"
RETURN RECEIPT
STORE masterds ON "server1"
 DISABLE RETURN SUBSCRIBER 5
 RETURN WAIT TIME 30;

While the application is committing updates to the master, subscriber1 experiences
problems and fails to acknowledge a replicated transaction update. The application is
blocked 30 seconds after which it commits its next update to the master. Over the
course of the application session, this commit/timeout cycle repeats 4 more times until
DISABLE RETURN disables return receipt blocking for subscriber1. The application
continues to wait for return-receipt acknowledgements from subscriber2 but not
from subscriber1.

RETURN SERVICES OFF WHEN REPLICATION STOPPED is the default setting for
the return receipt service. Therefore, return receipt is disabled under either one of the
following conditions:

Setting STORE attributes

9-22 Oracle TimesTen In-Memory Database Replication Guide

■ The subscriber is unable to acknowledge an update within the specified RETURN
WAIT TIME, as described above.

■ Replication is stopped, as described in "RETURN SERVICES {ON | OFF} WHEN
REPLICATION STOPPED" on page 9-20.

For another example that set the DISABLE RETURN attribute, see Example 9–12.

RESUME RETURN When we say return service blocking is "disabled," we mean that the
applications on the master database no longer block execution while waiting to receive
acknowledgements from the subscribers that they received or committed the
replicated updates. Note, however, that the master still listens for an
acknowledgement of each batch of replicated updates from the subscribers.

You can establish a return service recovery policy by setting the RESUME RETURN
attribute and specifying a resume latency value. When this attribute is set and return
service blocking has been disabled for a subscriber, the return receipt or return
twosafe service is re-enabled when the commit-to-acknowledge time for a transaction
falls below the value set by RESUME RETURN. The commit-to-acknowledge time is the
latency between when the application issues a commit and when the master receives
acknowledgement of the update from the subscriber.

Example 9–12 RESUME RETURN

If return receipt blocking has been disabled for subscriber1 and if RESUME RETURN
is set to 8 milliseconds, then return receipt blocking is re-enabled for subscriber1
the instant it acknowledges an update in less than 8 milliseconds from when it was
committed by the application on the master.

CREATE REPLICATION myscheme
ELEMENT e TABLE ttuser.tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriber1 ON "server2",
 subscriber2 ON "server3"
RETURN RECEIPT
STORE masterds ON "server1"
 DISABLE RETURN SUBSCRIBER 5
 RESUME RETURN 8;

The RESUME RETURN policy is enabled only when the replication agent is running.
You can cancel a return receipt resume policy by stopping the replication agent and
then using ALTER REPLICATION to set RESUME RETURN to zero.

DURABLE COMMIT Set the DURABLE COMMIT attribute to specify the durable commit
policy for applications that have return service blocking disabled by DISABLE
RETURN. When DURABLE COMMIT is set to ON, it overrides the DurableCommits
general connection attribute on the master database and forces durable commits
regardless of whether the replication agent is running or stopped.

DURABLE COMMIT is useful if you have only one subscriber. However, if you are
replicating the same data to two subscribers and you disable return service blocking to
one subscriber, then you achieve better performance if you rely on the other subscriber
than you would if you enable durable commits.

Example 9–13 DURABLE COMMIT ON

Set DURABLE COMMIT ON when establishing a DISABLE RETURN ALL policy to
disable return-receipt blocking for all subscribers. If return-receipt blocking is
disabled, commits are durably committed to disk to provide redundancy.

Setting STORE attributes

Defining Replication Schemes 9-23

CREATE REPLICATION myscheme
ELEMENT e TABLE tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriber ON "server2",
 subscriber2 ON "server3"
RETURN RECEIPT
STORE masterds ON "server1"
 DISABLE RETURN ALL 5
 DURABLE COMMIT ON
 RESUME RETURN 8;

LOCAL COMMIT ACTION When using the return twosafe service, you can specify how
the master replication agent responds to timeout errors by:

■ Setting the LOCAL COMMIT ACTION attribute in the STORE clause of the CREATE
REPLICATION statement

■ Calling the ttRepSyncSet procedure with the localAction parameter

The possible actions upon receiving a timeout during replication of a twosafe
transaction are:

■ COMMIT - On timeout, the commit function attempts to perform a commit to end
the transaction locally. No more operations are possible on the same transaction.

■ NO ACTION - On timeout, the commit function returns to the application, leaving
the transaction in the same state it was in when it entered the commit call, with the
exception that the application is not able to update any replicated tables. The
application can reissue the commit. This is the default

If the call returns with an error, you can use the ttRepXactStatus procedure
described in "Checking the status of return service transactions" on page 12-15 to check
the status of the transaction. Depending on the error, your application can choose to:

■ Reissue the commit call - This repeats the entire return twosafe replication cycle,
so that the commit call returns when the success or failure of the replicated
commit on the subscriber is known or if the timeout period expires.

■ Roll back the transaction - If the call returns with an error related to applying the
transaction on the subscriber, such as primary key lookup failure, you can roll
back the transaction on the master.

Compressing replicated traffic
If you are replicating over a low-bandwidth network, or if you are replicating massive
amounts of data, you can set the COMPRESS TRAFFIC attribute to reduce the amount
of bandwidth required for replication. The COMPRESS TRAFFIC attribute compresses
the replicated data from the database specified by the STORE parameter in your
CREATE REPLICATION or ALTER REPLICATION statement. TimesTen does not
compress traffic from other databases.

Although the compression algorithm is optimized for speed, enabling the COMPRESS
TRAFFIC attribute affects replication throughput and latency.

Example 9–14 Compressing traffic from one database

To compress replicated traffic from database dsn1 and leave the replicated traffic
from dsn2 uncompressed, the CREATE REPLICATION statement looks like:

CREATE REPLICATION repscheme
ELEMENT d1 DATASTORE
 MASTER dsn1 ON host1

Setting STORE attributes

9-24 Oracle TimesTen In-Memory Database Replication Guide

 SUBSCRIBER dsn2 ON host2
ELEMENT d2 DATASTORE
 MASTER dsn2 ON host2
 SUBSCRIBER dsn1 ON host1
STORE dsn1 ON host1 COMPRESS TRAFFIC ON;

Example 9–15 Compressing traffic between both databases

To compress the replicated traffic between both the dsn1 and dsn2 databases, use:

CREATE REPLICATION scheme
ELEMENT d1 DATASTORE
 MASTER dsn1 ON host1
 SUBSCRIBER dsn2 ON host2
ELEMENT d2 DATASTORE
 MASTER dsn2 ON host2
 SUBSCRIBER dsn1 ON host1
STORE dsn1 ON host1 COMPRESS TRAFFIC ON
STORE dsn2 ON host2 COMPRESS TRAFFIC ON;

Port assignments
Static port assignments are recommended. If you do not assign a PORT attribute, the
TimesTen daemon dynamically selects the port. When ports are assigned dynamically
for the replication agents, then the ports of the TimesTen daemons have to match as
well. Setting the PORT attribute for one replication scheme sets it for all replication
schemes.

You must assign static ports if you want to do online upgrades.

When statically assigning ports, it is important to specify the full host name, DSN and
port in the STORE attribute of the CREATE REPLICATION statement.

Example 9–16 Assigning static ports

CREATE REPLICATION repscheme
ELEMENT el1 TABLE ttuser.tab
 MASTER dsn1 ON host1
 SUBSCRIBER dsn2 ON host2
ELEMENT el2 TABLE ttuser.tab
 MASTER dsn2 ON host2
 SUBSCRIBER dsn1 ON host1
STORE dsn1 ON host1 PORT 16080
STORE dsn2 ON host2 PORT 16083;

Setting the log failure threshold
You can establish a threshold value that, when exceeded, sets an unavailable
subscriber to the failed state before the available log space is exhausted. Use the
FAILTHRESHOLD attribute to set the log failure threshold. See Example 9–24.

The default threshold value is 0, which means "no limit." See "Setting connection
attributes for logging" on page 10-10 for details about log failure threshold values.

If a master sets a subscriber database to the failed state, it drops all of the data for
the failed subscriber from its log and transmits a message to the failed subscriber
database. If the master replication agent can communicate with the subscriber
replication agent, then the message is transmitted immediately. Otherwise, the
message is transmitted when the connection is reestablished. After receiving the
message from the master, if the subscriber is configured for bidirectional replication or

Setting STORE attributes

Defining Replication Schemes 9-25

to propagate updates to other subscribers, it does not transmit any further updates,
because its replication state has been compromised.

Any application that connects to the failed subscriber receives a tt_
ErrReplicationInvalid (8025) warning indicating that the database has been
marked failed by a replication peer. Once the subscriber database has been
informed of its failed status, its state on the master database is changed from failed
to stop.

Applications can use the ODBC SQLGetInfo function to check if the database it is
connected to has been set to the failed state, as described in "Subscriber failures" on
page 11-2.

Replicating tables with different definitions
Use the TABLE DEFINITION CHECKING RELAXED attribute to enable replication of
tables that are not identical. For example, if tables have columns in a different order or
have a different number of partitions, you can replicate them using this clause. A table
has multiple partitions if columns have been added after its initial creation.

Setting the TABLE DEFINITION CHECKING attribute to RELAXED requires that
replicated tables have the same key definition, number of columns and column data
types. Table definition checking occurs on the subscriber side. Setting this attribute to
RELAXED for both master and subscriber has the same effect as setting it for only the
subscriber.

The RELAXED setting can result in slightly slower performance. The change in
performance depends on the workload and the number of partitions and columns in
the tables. You can set table definition checking to RELAXED temporarily while
consolidating tables with multiple partitions and then reset it to EXACT. There is no
performance loss for tables with identical structures.

Example 9–17 Replicating tables with columns in different positions

Create table t1 in dsn1 database:

CREATE TABLE ttuser.t1 (a INT PRIMARY KEY, b INT, c INT);

Create table ttuser.t1 in dsn2 database with the columns in a different order than
the columns in ttuser.t1 in dsn1 database. Note that the column names and data
types are the same in both tables and a is the primary key in both tables.

CREATE TABLE ttuser.t1 (c INT, a INT PRIMARY KEY, b INT);

Create replication scheme ttuser.rep1. Set TABLE DEFINITION CHECKING to
RELAXED for the subscriber, dsn2.

CREATE REPLICATION ttuser.rep1
 ELEMENT e1 TABLE ttuser.t1
 MASTER dsn1
 SUBSCRIBER dsn2
 STORE dsn2 TABLE DEFINITION CHECKING RELAXED;

Start the replication agent for both databases. Insert a row into ttuser.t1 on dsn1.

Note: See Example 9–18 and "Check partition counts for the tables"
in Oracle TimesTen In-Memory Database Troubleshooting Guide for more
information.

Configuring network operations

9-26 Oracle TimesTen In-Memory Database Replication Guide

Command> INSERT INTO ttuser.t1 VALUES (4,5,6);
1 row inserted.

Verify the results on ttuser.t1 on dsn2.

Command> SELECT * FROM ttuser.t1;
< 5, 6, 4 >
1 row found.

Example 9–18 Replicating tables with a different number of partitions

When you alter a table to add columns, it increases the number of partitions in the
table, even if you subsequently drop the new columns. You can use the RELAXED
setting for TABLE DEFINITION CHECKING to replicate tables that have different
number of partitions.

Create table ttuser.t3 on dsn1 with two columns.

CREATE TABLE ttuser.t3 (a INT PRIMARY KEY, b INT);

Create table ttuser.t3 on dsn2 with one column that is the primary key.

CREATE TABLE ttuser.t3 (a INT PRIMARY KEY);

Add a column to the table on dsn2. This increases the number of partitions to two,
while the table on dsn1 has one partition.

ALTER TABLE ttuser.t3 ADD COLUMN b INT;

Create the replication scheme on both databases.

CREATE REPLICATION reppart
 ELEMENT e2 TABLE ttuser.t3
 MASTER dsn1
 SUBSCRIBER dsn2
 STORE dsn2 TABLE DEFINITION CHECKING RELAXED;

Start the replication agent for both databases. Insert a row into ttuser.t3 on dsn1.

Command> INSERT INTO ttuser.t3 VALUES (1,2);
1 row inserted.

Verify the results in ttuser.t3 on dsn2.

Command> SELECT * FROM ttuser.t3;
< 1, 2 >
1 row found.

Configuring network operations
If your replication host has more than one network interface, you may wish to
configure replication to use an interface other than the default interface. Although you
must specify the host name returned by the operating system's hostname command
when you define a replication element, you may configure replication to send or
receive traffic over a different interface using the ROUTE clause.

The syntax of the ROUTE clause is:

ROUTE MASTER FullDatabaseName SUBSCRIBER FullDatabaseName
 {{MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost}
 PRIORITY Priority} [...]

Replication scheme syntax examples

Defining Replication Schemes 9-27

In dual master replication schemes, each master database is a subscriber of the other
master database. This means that the CREATE REPLICATION statement should
include ROUTE clauses in multiples of two to specify a route in both directions.

Example 9–19 Configuring multiple network interfaces

If host host1 is configured with a second interface accessible by the host name
host1fast, and host2 is configured with a second interface at IP address
192.168.1.100, you may specify that the secondary interfaces are used with the
replication scheme.

CREATE REPLICATION repscheme
ELEMENT e1 TABLE ttuser.tab
 MASTER dsn1 ON host1
 SUBSCRIBER dsn2 ON host2
ELEMENT e2 TABLE ttuser.tab
 MASTER dsn2 ON host2
 SUBSCRIBER dsn1 ON host1
ROUTE MASTER dsn1 ON host1 SUBSCRIBER dsn2 ON host2
 MASTERIP host1fast PRIORITY 1
 SUBSCRIBERIP "192.168.1.100" PRIORITY 1
ROUTE MASTER dsn2 ON host2 SUBSCRIBER dsn1 ON host1
 MASTERIP "192.168.1.100" PRIORITY 1
 SUBSCRIBERIP host1fast PRIORITY 1;

Alternately, on a replication host with more than one interface, you may wish to
configure replication to use one or more interfaces as backups, in case the primary
interface fails or the connection from it to the receiving host is broken. You may use
the ROUTE clause to specify two or more interfaces for each master or subscriber that
are used by replication in order of priority.

Example 9–20 Configuring network priority

If host host1 is configured with two network interfaces at IP addresses 192.168.1.100
and 192.168.1.101, and host host2 is configured with two interfaces at IP addresses
192.168.1.200 and 192.168.1.201, you may specify that replication use IP addresses
192.168.1.100 and 192.168.200 to transmit and receive traffic first, and to try IP
addresses 192.168.1.101 or 192.168.1.201 if the first connection fails.

CREATE REPLICATION repscheme
ELEMENT e TABLE ttuser.tab
 MASTER dsn1 ON host1
 SUBSCRIBER dsn2 ON host2
ROUTE MASTER dsn1 ON host1 SUBSCRIBER dsn2 ON host2
 MASTERIP "192.168.1.100" PRIORITY 1
 MASTERIP "192.168.1.101" PRIORITY 2
 SUBSCRIBERIP "192.168.1.200" PRIORITY 1
 SUBSCRIBERIP "192.168.1.201" PRIORITY 2;

If replication on the master host is unable to bind to the MASTERIP with the highest
priority, it will try to connect using subsequent MASTERIP addresses in order of
priority immediately. However, if the connection to the subscriber fails for any other
reason, replication will try to connect using each of the SUBSCRIBERIP addresses in
order of priority before it tries the MASTERIP address with the next highest priority.

Replication scheme syntax examples
The examples in this section illustrate how to configure a variety of replication
schemes. The replication schemes include:

Replication scheme syntax examples

9-28 Oracle TimesTen In-Memory Database Replication Guide

■ Single subscriber schemes

■ Multiple subscriber schemes with return services and a log failure threshold

■ Replicating tables to different subscribers

■ Propagation scheme

■ Bidirectional split workload schemes

■ Bidirectional distributed workload scheme

Single subscriber schemes
The scheme shown in Example 9–21 is a single master and subscriber unidirectional
replication scheme. The two databases are located on separate hosts, system1 and
system2. We use the RETURN RECEIPT service to confirm that all transactions
committed on the ttuser.tab table in the master database are received by the
subscriber.

Example 9–21 Replicating one table

CREATE REPLICATION repscheme
ELEMENT e TABLE ttuser.tab
 MASTER masterds ON "system1"
 SUBSCRIBER subscriberds ON "system2"
 RETURN RECEIPT;

The scheme shown in Example 9–22 is a single master and subscriber unidirectional
replication scheme. The two databases are located on separate hosts, server1 and
server2. The master database, named masterds, replicates its entire contents to the
subscriber database, named subscriberds.

Example 9–22 Replicating entire database

CREATE REPLICATION repscheme
ELEMENT e DATASTORE
 MASTER masterds ON "server1"
 SUBSCRIBER subscriberds ON "server2";

Multiple subscriber schemes with return services and a log failure threshold
You can create a replication scheme that includes up to 128 subscriber databases. If
you are configuring propagator databases, you can configure up to 128 propagators.
Each propagator can have up to 128 subscriber databases. See "Propagation scheme"
on page 9-30 for an example of a replication scheme with propagator databases.

Example 9–23 Replicating to two subscribers

This example establishes a master database, named masterds, that replicates the
ttuser.tab table to two subscriber databases, subscriber1ds and
subscriber2ds, located on server2 and server3, respectively. The name of the
replication scheme is twosubscribers. The name of the replication element is e.

CREATE REPLICATION twosubscribers
ELEMENT e TABLE ttuser.tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriber1ds ON "server2",
 subscriber2ds ON "server3";

Replication scheme syntax examples

Defining Replication Schemes 9-29

Example 9–24 Replicating to two subscribers with RETURN RECEIPT

This example uses the basic example in Example 9–23 and adds a RETURN RECEIPT
attribute and a STORE parameter. RETURN RECEIPT enables the return receipt service
for both databases. The STORE parameter sets a FAILTHRESHOLD value of 10 to
establish the maximum number of transaction log files that can accumulate on
masterds for a subscriber before it assumes the subscriber has failed.

CREATE REPLICATION twosubscribers
ELEMENT e TABLE ttuser.tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriber1ds ON "server2",
 subscriber2ds ON "server3"
 RETURN RECEIPT
STORE masterds FAILTHRESHOLD 10;

Example 9–25 Enabling RETURN RECEIPT for only one subscriber

This example shows how to enable RETURN RECEIPT for only subscriber2ds.
Note that there is no comma after the subscriber1ds definition.

CREATE REPLICATION twosubscribers
ELEMENT e TABLE ttuser.tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriber1ds ON "server2"
 SUBSCRIBER subscriber2ds ON "server3" RETURN RECEIPT
STORE masterds FAILTHRESHOLD 10;

Example 9–26 Enabling different return services for subscribers

This example shows how to apply RETURN RECEIPT BY REQUEST to
subscriber1ds and RETURN RECEIPT to subscriber2ds. In this scheme,
applications accessing subscriber1ds must use the ttRepSyncSet procedure to
enable the return services for a transaction, while subscriber2ds unconditionally
provides return services for all transactions.

CREATE REPLICATION twosubscribers
ELEMENT e TABLE ttuser.tab
 MASTER masterds ON "server1"
 SUBSCRIBER subscriberds1 ON "server2" RETURN RECEIPT BY REQUEST
 SUBSCRIBER subscriber2ds ON "server3" RETURN RECEIPT
STORE masterds FAILTHRESHOLD 10;

Replicating tables to different subscribers
The replication scheme shown in Example 9–27 establishes a master database, named
centralds, that replicates four tables. ttuser.tab1 and ttuser.tab2 are
replicated to the subscriber backup1ds. ttuser.tab3 and ttuser.tab4 are
replicated to backup2ds. The master database is located on the finance server. Both
subscribers are located on the backupsystem server.

Example 9–27 Replicating tables to different subscribers

CREATE REPLICATION twobackups
ELEMENT a TABLE ttuser.tab1
 MASTER centralds ON "finance"
 SUBSCRIBER backup1ds ON "backupsystem"
ELEMENT b TABLE ttuser.tab2
 MASTER centralds ON "finance"
 SUBSCRIBER backup1ds ON "backupsystem"
ELEMENT d TABLE ttuser.tab3

Replication scheme syntax examples

9-30 Oracle TimesTen In-Memory Database Replication Guide

 MASTER centralds ON "finance"
 SUBSCRIBER backup2ds ON "backupsystem"
ELEMENT d TABLE ttuser.tab4
 MASTER centralds ON "finance"
 SUBSCRIBER backup2ds ON "backupsystem";

Propagation scheme
In Example 9–28, the master database sends updates on a table to a propagator that
forwards the changes to two subscribers. The master database is centralds on the
finance host. The propagator database is propds on the nethandler host. The
subscribers are backup1ds on backupsystem1 and backup2ds on
backupsystem2.

The replication scheme has two elements. For element a, the changes to the tab table
on centralds are replicated to the propds propagator database. For element b, the
changes to the tab table received by propds are replicated to the two subscribers,
backup1ds and backup2ds.

Example 9–28 Propagation

CREATE REPLICATION propagator
ELEMENT a TABLE ttuser.tab
 MASTER centralds ON "finance"
 SUBSCRIBER propds ON "nethandler"
ELEMENT b TABLE ttuser.tab
 PROPAGATOR propds ON "nethandler"
 SUBSCRIBER backup1ds ON "backupsystem1",
 backup2ds ON "backupsystem2";

Bidirectional split workload schemes
In Example 9–29, there are two databases, westds on the westcoast host and
eastds on the eastcoast host. Customers are represented in two tables:
waccounts contains data for customers in the Western region and eaccounts has
data for customers from the Eastern region. The westds database updates the
waccounts table and replicates it to the eastds database. The eaccounts table is
owned by the eastds database and is replicated to the westds database. The RETURN
RECEIPT attribute enables the return receipt service to guarantee that transactions on
either master table are received by their subscriber.

Example 9–29 Bidirectional split workload

CREATE REPLICATION r1
ELEMENT elem_waccounts TABLE ttuser.waccounts
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast" RETURN RECEIPT
ELEMENT elem_eaccounts TABLE ttuser.eaccounts
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast" RETURN RECEIPT;

Bidirectional distributed workload scheme
Example 9–30 shows a bidirectional general workload replication scheme in which the
ttuser.accounts table can be updated on either the eastds or westds database.
Each database is both a master and a subscriber for the accounts table.

Creating replication schemes with scripts

Defining Replication Schemes 9-31

Example 9–30 Bidirectional distributed workload scheme

CREATE REPLICATION r1
ELEMENT elem_accounts_1 TABLE ttuser.accounts
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
ELEMENT elem_accounts_2 TABLE ttuser.accounts
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast";

When elements are replicated in this manner, the applications should write to each
database in a coordinated manner to avoid simultaneous updates on the same data. To
manage update conflicts, include a timestamp column of type BINARY(8) in the
replicated table and enable timestamp comparison by including the CHECK
CONFLICTS clause in the CREATE REPLICATION statement. See Chapter 14,
"Resolving Replication Conflicts" for a complete discussion on how to manage update
conflicts.

Example 9–31 shows that the tstamp timestamp column is included in the
ttuser.accounts table. The CREATE REPLICATION statement has been modified
to include the CHECK CONFLICTS clause.

Example 9–31 Managing update conflicts

CREATE TABLE ttuser.accounts (custname VARCHAR2(30) NOT NULL,
 address VARCHAR2(80),
 curbalance DEC(15,2),
 tstamp BINARY(8),
 PRIMARY KEY (custname));

CREATE REPLICATION r1
ELEMENT elem_accounts_1 TABLE ttuser.accounts
 CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN tstamp
 UPDATE BY SYSTEM
 ON EXCEPTION ROLLBACK WORK
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
ELEMENT elem_accounts_2 TABLE ttuser.accounts
 CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN tstamp
 UPDATE BY SYSTEM
 ON EXCEPTION ROLLBACK WORK
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast";

Creating replication schemes with scripts
Creating your replication schemes with scripts can save you time and help you avoid
mistakes. This section provides some suggestions for automating the creation of
replication schemes using Perl.

Consider the general workload bidirectional scheme shown in Example 9–32. Entering
the element description for the five tables, ttuser.accounts, ttuser.sales,

Note: Do not use a bidirectional distributed workload replication
scheme with return twosafe return service.

Creating replication schemes with scripts

9-32 Oracle TimesTen In-Memory Database Replication Guide

ttuser.orders, ttuser.inventory, and ttuser.customers, would be tedious
and error-prone if done manually.

Example 9–32 General workload bidirectional replication scheme

CREATE REPLICATION bigscheme
ELEMENT elem_accounts_1 TABLE ttuser.accounts
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
ELEMENT elem_accounts_2 TABLE ttuser.accounts
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"
ELEMENT elem_sales_1 TABLE ttuser.sales
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
ELEMENT elem_sales_2 TABLE ttuser.sales
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"
ELEMENT elem_orders_1 TABLE ttuser.orders
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
ELEMENT elem_orders_2 TABLE ttuser.orders
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"
ELEMENT elem_inventory_1 TABLE ttuser.inventory
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
ELEMENT elem_inventory_2 TABLE ttuser.inventory
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"
ELEMENT elem_customers_1 TABLE ttuser.customers
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
ELEMENT elem_customers_2 TABLE ttuser.customers
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast";

It is often more convenient to automate the process of writing a replication scheme
with scripting. For example, the perl script shown in Example 9–33 can be used to
build the scheme shown in Example 9–32.

Example 9–33 Using a Perl script to create a replication scheme

@tables = qw(
 ttuser.accounts
 ttuser.sales
 ttuser.orders
 ttuser.inventory
 ttuser.customers
);

print "CREATE REPLICATION bigscheme";

foreach $table (@tables) {
 $element = $table;
 $element =~ s/repl\./elem_/;

 print "\n";
 print " ELEMENT $element_1 TABLE $table\n";
 print " MASTER westds ON \"westcoast\"\n";

Creating replication schemes with scripts

Defining Replication Schemes 9-33

 print " SUBSCRIBER eastds ON \"eastcoast\"\n";
 print " ELEMENT $element_2 TABLE $table\n";
 print " MASTER eastds ON \"eastcoast\"\n";
 print " SUBSCRIBER westds ON \"westcoast\"";
 }
print ";\n";

The @tables array shown in Example 9–33 can be obtained from some other source,
such as a database. For example, you can use ttIsql and f in a Perl statement to
generate a @tables array for all of the tables in the WestDSN database with the owner
name repl:

@tables = 'ttIsql -e "tables; quit" WestDSN
 | grep " REPL\."';

Example 9–34 shows a modified version of the script in Example 9–33 that creates a
replication scheme for all of the repl tables in the WestDSN database. (Note that some
substitution may be necessary to remove extra spaces and line feeds from the grep
output.)

Example 9–34 Perl script to create a replication scheme for all tables in WestDSN

@tables = 'ttIsql -e "tables; quit" WestDSN
 | grep " REPL\."';

print "CREATE REPLICATION bigscheme";

foreach $table (@tables) {
 $table =~ s/^\s*//; # Remove extra spaces
 $table =~ s/\n//; # Remove line feeds
 $element = $table;
 $element =~ s/repl\./elem_/;

 print "\n";
 print " ELEMENT $element_1 TABLE $table\n";
 print " MASTER westds ON \"westcoast\"\n";
 print " SUBSCRIBER eastds ON \"eastcoast\"\n";
 print " ELEMENT $element_2 TABLE $table\n";
 print " MASTER eastds ON \"eastcoast\"\n";
 print " SUBSCRIBER westds ON \"westcoast\"";
 }
print ";\n";

Creating replication schemes with scripts

9-34 Oracle TimesTen In-Memory Database Replication Guide

10

Setting Up a Replicated System 10-1

10Setting Up a Replicated System

This chapter describes how to set up and start replication. All of the topics in this
chapter apply to replication schemes that are not active standby pairs. Some of the
topics in this chapter also apply to active standby pairs.

To set up an active standby pair, see:

■ "Setting up an active standby pair with no cache groups" on page 4-3

■ "Setting up an active standby pair with a read-only cache group" on page 5-2

■ "Setting up an active standby pair with an AWT cache group" on page 5-4

This chapter includes the following topics:

■ Configuring the network

■ Setting up the replication environment

■ Applying a replication scheme to a database

■ Duplicating a master database to a subscriber

■ Configuring a large number of subscribers

■ Replicating databases across releases

■ Starting and stopping the replication agents

■ Setting the replication state of subscribers

Configuring the network
This section applies to both active standby pairs and other replication schemes. It
describes some of the issues to consider when replicating TimesTen data over a
network. The topics include:

■ Network bandwidth requirements

■ Replication in a WAN environment

■ Configuring host IP addresses

■ Identifying the local host of a replicated database

Network bandwidth requirements
The network bandwidth required for TimesTen replication depends on the bulk and
frequency of the data being replicated. This discussion explores the types of
transactions that characterize the high and low ends of the data range and the network
bandwidth required to replicate the data between TimesTen databases.

Configuring the network

10-2 Oracle TimesTen In-Memory Database Replication Guide

Table 10–1 provides guidelines for calculating the size of replicated records.

Transactions are sent between replicated databases in batches. A batch is created
whenever there is no more data in the transaction log buffer in the master database, or
when the current batch is roughly 256K bytes. See "Copying updates between
databases" on page 1-2 for more information.

Replication in a WAN environment
TimesTen replication uses the TCP/IP protocol, which is not optimized for a WAN
environment. You can improve replication performance over a WAN by installing a
third-party "TCP stack" product. If replacing the TCP stack is not a feasible solution,
you can reduce the amount of network traffic that the TCP/IP protocol has to deal
with by setting the COMPRESS TRAFFIC attribute in the CREATE ACTIVE STANDBY
PAIR or CREATE REPLICATION statement. See "Compressing replicated traffic" on
page 9-23 for details.

See installation information for your platform in Oracle TimesTen In-Memory Database
Installation Guide for information about changing TCP/IP kernel parameters for better
performance.

Configuring host IP addresses
In a replication scheme, you need to identify the name of the host on which your
database resides. The operating system translates this host name to one or more IP
addresses. This section describes how to configure replication so that it uses the
correct host names and IP addresses for each host.

This section includes these topics:

■ Identifying database hosts and network interfaces using the ROUTE clause

■ Identifying database hosts on UNIX without using the ROUTE clause

■ Host name resolution on Windows

■ User-specified addresses for TimesTen daemons and subdaemons

Table 10–1 Replicated record sizes

Record Type Size

Begin transaction 48 bytes

Update 116 bytes

+ 18 bytes per column updated

+ size of old column values

+ size of new column values

+ size of the primary key or unique key

Delete 104 bytes

+ size of the primary key or unique key

Insert 104 bytes

+ size of the primary key or unique key

+ size of inserted row

Configuring the network

Setting Up a Replicated System 10-3

Identifying database hosts and network interfaces using the ROUTE clause
When specifying the host for a database in a replication element, you should always
use the name returned by the hostname command, as replication uses the same host
name to verify that the current host is involved in the replication scheme. Replication
schemes may not be created that do not include the current host.

If a host contains multiple network interfaces (with different IP addresses), you should
specify which interfaces are to be used by replication using the ROUTE clause. You
must specify a priority for each interface. Replication tries to first connect using the
address with the highest priority, and if a connection cannot be established, it tries the
remaining addresses in order of priority until a connection is established. If a
connection to a host fails while using one IP address, replication attempts to
re-connect (or fall back) to another IP address, if more than one address has been
specified in the ROUTE clause.

See "Configuring network operations" on page 9-26 for more information.

Identifying database hosts on UNIX without using the ROUTE clause
If a replication configuration is specified using host names rather than IP addresses,
replication must be able to translate host names of peers into IP addresses. For this to
happen efficiently on Windows, make sure each Windows machine is set up to query
either a valid WINS server or a valid DNS server that has correct information about
the hosts on the network. In the absence of such servers, static HOST-to-IP entries can
be entered in either:

When possible, you should use the ROUTE clause of a replication scheme to identify
database hosts and the network interfaces to use for replication. However, if you have
a legacy replication configuration that does not use the ROUTE clause, this section
explains how to configure operating system and DNS files for a replication host with
multiple network interfaces.

If a host contains multiple network interfaces (with different IP addresses) and
replication is not configured with a ROUTE clause, TimesTen replication tries to
connect to the IP addresses in the same order as returned by the gethostbyname call.
It will try to connect using the first address; if a connection cannot be established, it
tries the remaining addresses in order until a connection is established. TimesTen
replication uses this same sequence each time it establishes a new connection to a host.
If a connection to a host fails on one IP address, TimesTen replication attempts to
re-connect (or fall back) to another IP address for the host in the same manner
described above.

There are two basic ways you can configure a host to use multiple IP addresses on
UNIX platforms: DNS or the /etc/hosts file.

Note: Addresses for the ROUTE clause may be specified as either host
names or IP addresses. However, if your host has more than one IP
address configured for a given host name, you should only configure
the ROUTE clause using the IP addresses, in order to ensure that
replication uses only the IP addresses that you intend.

Note: If you have multiple network interface cards (NICs), be sure
that "multi on" is specified in the /etc/host.conf file. Otherwise,
gethostbyname will not return multiple addresses.

Configuring the network

10-4 Oracle TimesTen In-Memory Database Replication Guide

For example, if your machine has two NICs, use the following syntax for your
/etc/hosts file:

127.0.0.1 localhost
IP_address_for_NIC_1 official_hostname optional_alias
IP_address_for_NIC_2 official_hostname optional_alias

The host name official_hostname is the name returned by the hostname
command.

When editing the /etc/hosts file, keep in mind that:

■ You must log in as root to change the /etc/hosts file.

■ There should only be one line per IP address.

■ There can be multiple alias names on each line.

■ When there are multiple IP addresses for the same host name, they must be on
consecutive lines.

■ The host name can be up to 30 characters long.

For example, the following entry in the /etc/hosts file on a UNIX platform
describes a server named Host1 with two IP addresses:

127.0.0.1 localhost
10.10.98.102 Host1
192.168.1.102 Host1

To specify the same configuration for DNS, your entry in the domain zone file would
look like:

Host1 IN A 10.10.98.102
 IN A 192.168.1.102

In either case, you only need to specify Host1 as the host name in your replication
scheme and replication will use the first available IP address when establishing a
connection.

In an environment in which multiple IP addresses are used, you can also assign
multiple host names to a single IP address in order to restrict a replication connection
to a specific IP address. For example, you might have an entry in your /etc/hosts
file that looks like:

127.0.0.1 localhost
10.10.98.102 Host1
192.168.1.102 Host1 RepHost1

or a DNS zone file that looks like:

Host1 IN A 10.10.98.102
 IN A 192.168.1.102
RepHost1 IN A 192.168.1.102

If you want to restrict replication connections to IP address 192.168.1.102 for this host,
you can specify RepHost1 as the host name in your replication scheme. Another
option is to simply specify the IP address as the host name in the CREATE
REPLICATION statement used to configure your replication scheme.

Host name resolution on Windows
If a replication configuration is specified using host names rather than IP addresses,
replication must be able to translate host names of peers into IP addresses. For this to

Configuring the network

Setting Up a Replicated System 10-5

happen efficiently on Windows, make sure each Windows machine is set up to query
either a valid WINS server or a valid DNS server that has correct information about
the hosts on the network. In the absence of such servers, static host-to-IP entries can be
entered in either:

%windir%\system32\drivers\etc\hosts

or

%windir%\system32\drivers\etc\lmhosts

Without any of these options, a Windows machine resorts to broadcasting to detect
peer nodes, which is extremely slow.

You may also encounter extremely slow host name resolution if the Windows machine
cannot communicate with the defined WINS servers or DNS servers, or if the host
name resolution set up is incorrect on those servers. Use the ping command to test
whether a host can be efficiently located. The ping command responds immediately if
host name resolution is set up properly.

User-specified addresses for TimesTen daemons and subdaemons
By default, the TimesTen main daemon, all subdaemons and all agents use any
available address to listen on a socket for requests. You can modify the
ttendaemon.options file to specify an address for communication among the
agents and daemons by including a -listenaddr option. See "Managing TimesTen
daemon options" in Oracle TimesTen In-Memory Database Operations Guide for details.

Suppose that your machine has two NICs whose addresses are 10.10.10.100 and
10.10.11.200. The loopback address is 127.0.0.1. Then keep in mind the following as it
applies to the replication agent:

■ If you do not set the -listenaddr option in the ttendaemon.options file,
then any process can talk to the daemons and agents.

■ If you set -listenaddr to 10.10.10.100, then any process on the local host or the
10.10.10 net can talk to daemons and agents on 10.10.10.100. No processes on the
10.10.11 net can talk to the daemons and agents on 10.10.10.100.

■ If you set -listenaddr to 127.0.0.1, then only processes on the local host can talk
to the daemons and agents. No processes on other hosts can talk the daemons and
agents.

Identifying the local host of a replicated database
Ordinarily, TimesTen replication is able to identify the hosts involved in a replication
configuration using normal operating system host name resolution methods.
However, in some rare instances, if the host has an unusual host name configuration,
TimesTen is unable to determine that the local host matches the host name as specified
in the replication scheme. When this occurs, you receive error 8191, "This store is not
involved in a replication scheme," when attempting to start replication using
ttRepStart or ttAdmin -repStart. The ttHostNameSet built-in procedure may
be used in this instance to explicitly indicate to TimesTen that the current database is
in fact the database specified in the replication scheme. See "ttHostNameSet" in Oracle
TimesTen In-Memory Database Reference for more information.

Note: You must be consistent in identifying a database host in a
replication scheme. Do not identify a host using its IP address for one
database and then use its host name for the same or another database.

Setting up the replication environment

10-6 Oracle TimesTen In-Memory Database Replication Guide

Setting up the replication environment
The topics related to setting up your replication environment include:

■ Establishing the databases

■ Connection attributes for replicated databases

■ Configuring parallel replication

■ Managing the transaction log on a replicated database

Establishing the databases
You can replicate one or more tables on any existing database. If the database you
want to replicate does not yet exist, you must first create one, as described in
"Managing TimesTen Databases" in Oracle TimesTen In-Memory Database Operations
Guide.

After you have identified or created the master database, create a DSN definition for
the subscriber database on the target host. Set the connection attributes for the master
and subscriber databases as described in "Connection attributes for replicated
databases" on page 10-6.

After you have defined the DSN for the subscriber, you can populate the subscriber
database with the tables to be replicated from the master in one of two ways:

■ Connect to the database and use SQL statements to create new tables in the
subscriber database that match those to be replicated from the master.

■ Use the ttRepAdmin -duplicate utility to copy the entire contents of the
master database to the subscriber. See "Duplicating a master database to a
subscriber" on page 10-12.

Connection attributes for replicated databases
Databases that replicate to each other must have the same DatabaseCharacterSet
data store attribute. TimesTen does not perform any character set conversion between
replicated databases.

If you wish to configure parallel replication, see "Configuring parallel replication" on
page 10-7 for information about setting the ReplicationParallelism and
ReplicationApplyOrdering data store attributes.

See "Setting connection attributes for logging" on page 10-10 for recommendations for
managing the replication log files.

It is possible to replicate between databases with different settings for the TypeMode
data store attribute. However, you must make sure that the underlying data type for
each replicated column is the same on each node. See "TypeMode" in Oracle TimesTen
In-Memory Database Reference for more information.

In an active standby pair, use the ReceiverThreads first connection attribute to
increase the number of threads that apply changes from the active database to the
standby database from 1 to 2. If you set ReceiverThreads to 2 on the standby, you
should also set it to 2 on the active to maintain increased throughput if there is a
failover.

You can also set ReceiverThreads to 2 on one or more read-only subscribers in an
active standby pair to increase replication throughput from the standby database.

Databases must be hosted on systems that have two or more CPUs to take advantage
of setting this attribute to 2.

Setting up the replication environment

Setting Up a Replicated System 10-7

Configuring parallel replication
By default, replication is performed with a single thread where the nodes in a
replication scheme have one log reader, or transmitter thread, on the source database,
and one applier, or receiving thread, on the target database. You can increase your
performance by configuring parallel replication, which configures multiple threads for
sending updates from the source database to the target database and for applying the
updates on the target database.

There are two types of parallel replication, each of which is configured with the
ReplicationApplyOrdering and ReplicationParallelism data store creation
attributes and must be set when the database is created. Since both
ReplicationParallelism and ReplicationApplyOrdering attributes are data
store attributes, they cannot be modified after database creation.

The following sections describe both options for parallel replication:

■ Configuring automatic parallel replication

■ Configuring user-defined parallel replication for other replication schemes

Configuring automatic parallel replication
Automatic parallel replication enables you to configure multiple threads that act in
parallel to replicate and apply transactional changes to nodes in a replication scheme.
Automatic parallel replication enforces transactional dependencies and applies
changes in commit order.

Automatic parallel replication is enabled by default with
ReplicationApplyOrdering=0. To configure parallel replication, set
ReplicationParallelism to a number from 2 to 32. The number cannot exceed
half the value of LogBufParallelism. This number indicates the number of
transmitter threads on the source database and the number of receiver threads on the
target database. The default for ReplicationParallelism is 1, which indicates
single-threaded replication.

If the replication scheme is an active standby pair that replicates AWT cache groups,
the settings for ReplicationApplyOrdering, ReplicationParallelism and

Note: If you enable parallel replication, you cannot execute both
DDL and DML statements in the same transaction.

Note: All databases within the replication scheme that use parallel
replication must be configured identically with the same type of
parallel replication and the same number of threads or tracks.

The only time you can have different values for parallel replication
attributes is during an upgrade. For details, see "Performing an
upgrade on databases that use parallel replication" in the Oracle
TimesTen In-Memory Database Installation Guide.

Note: If ReplicationParallelism is greater than 1, the
LogBufParallelism first connection attribute must be an integral
multiple of ReplicationParallelism.

Setting up the replication environment

10-8 Oracle TimesTen In-Memory Database Replication Guide

the CacheAwtParallelism data store attributes determine how many threads are
used to apply changes in the TimesTen cache tables to the corresponding Oracle
tables. See "Configuring parallel propagation to Oracle tables" in Oracle In-Memory
Database Cache User's Guide for more information.

For more information on these data store attributes, see "ReplicationParallelism",
"ReplicationApplyOrdering", and "LogBufParallelism" in the Oracle TimesTen
In-Memory Database Reference.

Configuring user-defined parallel replication for other replication schemes
If your application has predictable transactional dependencies and does not require
the commit order on the target database be the same as the order on the source
database, you can increase replication throughput by using user-defined parallel
replication, which enables the user to manually divide work across different tracks.

User-defined parallel replication configures multiple threads for sending updates from
the source database to the target database and for applying the updates on the target
database. The application assigns transactions to tracks. The application specifies
which track a transaction belongs to when the transaction starts on the source
database. The transactions in each track are applied in the order in which they are
received on the target database, but commit order is not maintained for transactions
across the different tracks.

In general, transactions that modify the same table should be assigned to the same
replication track. In addition, updates that should be applied in order on the receiving
side should use the same track. However, if all transactions insert to a particular table,
they can be assigned to different tracks to increase replication throughput. You can
split the workload for a table across multiple tracks with a key that ties a row to the
same track.

Enable user-defined parallel replication by setting these data store attributes at
database creation time:

■ Set ReplicationApplyOrdering to 1.

■ Set ReplicationParallelism to a number from 1 to 64. This number indicates
the number of transmitter threads on the source database and the number of
receiver threads on the target database. The default is 1, which indicates a single
thread. Parallel replication requires at least two threads.

In addition, the application needs to assign transactions to tracks by one of these
methods:

■ Set the ReplicationTrack general connection attribute to a non-zero number.
All transactions issued by the connection are assigned to this track. The value can
be any number. TimesTen maps the ReplicationTrack number for this
connection to one of the available parallel replication threads. Thus, the
application can use any number to group transactions that should be applied in
order. See "ReplicationTrack" in Oracle TimesTen In-Memory Database Reference.

Note: Use caution in assigning tracks to transactions that affect
tables with foreign key relationships. If transactions on related tables
are assigned to different tracks, one of the transactions can be lost
because the transactions may be applied out of commit order.

Setting up the replication environment

Setting Up a Replicated System 10-9

■ Use the ALTER SESSION SQL statement to set the replication track number for
the current connection. See "ALTER SESSION" in Oracle TimesTen In-Memory
Database SQL Reference.

■ Use the TT_REPLICATION_TRACK ODBC connection option for the
SQLSetConnectOption ODBC function. See "Features for use with replication"
in Oracle TimesTen In-Memory Database C Developer's Guide

■ Use the setReplicationTrack() method of the TimesTenConnection JDBC
class. See "Features for use with replication" in Oracle TimesTen In-Memory Database
Java Developer's Guide

Use the ttConfiguration built-in procedure to return the replication track number
for the current connection. Use the ttLogHolds built-in procedure to verify that
multiple tracks are being used.

Restrictions on user-defined parallel replication

■ Do not configure user-defined parallel replication for tables that have an aging
policy defined.

■ Databases configured for user-defined parallel replication cannot contain cache
groups.

■ A database cannot be defined as a propagator when user-defined parallel
replication is configured.

■ User-defined parallel replication is not supported for synchronous replication,
including databases with the RETURN RECEIPT and RETURN TWOSAFE
attributes.

■ Cross-release replication and migration from a database that does not have
user-defined parallel replication enabled to a database that does have user-defined
parallel replication enabled is not supported from release 11.2.1.6.0 until 11.2.1.8.0.
It is supported from releases earlier than 11.2.1.6.0 and from 11.2.1.8.0 and later.
Users of releases from 11.2.1.6.0 to 11.2.1.8.0 can perform an upgrade by first
applying an in-place patch release upgrade to 11.2.1.8.0. For details, see
"Performing an upgrade when using parallel replication" in the Oracle TimesTen
In-Memory Database Installation Guide.

Managing the transaction log on a replicated database
This section includes these topics:

■ About log buffer flushing

■ About transaction log growth on a master database

■ Setting connection attributes for logging

About log buffer flushing
A dedicated subdaemon thread writes the contents of the log buffer to disk
periodically. These writes may be synchronous or buffered. The subdaemon thread
ensures that the system I/O buffer never fills up with more transaction log data than
the value of the LogFileSize first connection attribute without being synchronized
to the log buffer.

If the database is configured with LogFlushMethod=2, then all writes to the disk are
synchronous writes and the data is durably written to disk before the write call
returns. If the database is configured with LogFlushMethod=1, then the writes are
buffered unless there is a specific request from an application for synchronous writes.

Setting up the replication environment

10-10 Oracle TimesTen In-Memory Database Replication Guide

In addition to the periodic writes, an application can also trigger the subdaemon
thread to write the buffer contents to disk. The following are cases where the
application triggers a synchronous write to the disk:

■ When a transaction that requested a durable commit is committed. A transaction
can request a durable commit by calling the ttDurableCommit built-in
procedure or by having the DurableCommits connection attribute set to 1.

■ When the replication agent sends a batch of transactions to a subscriber and the
master has been configured for replication with the TRANSMIT DURABLE attribute
(the default).

■ When the replication agent periodically executes a durable commit, whether the
master database is configured with TRANSMIT DURABLE or not.

Transactions are also written to disk durably when durable commits are configured as
part of the return service failure policies and a failure has occurred.

The size of the log buffer has no influence on the ability of TimesTen to write data to
disk under any of the circumstances listed above.

About transaction log growth on a master database
In databases that do not use replication, Transaction Log API (XLA), cache groups or
incremental backup, unneeded records in the log buffer and unneeded transaction log
files are purged each time a checkpoint is initiated, either by the automatic
background checkpointing thread or by an application's call to the ttCkpt or
ttCkptBlocking built-in procedures. In a replicated database, transactions remain
in the log buffer and transaction log files until the master replication agent confirms
they have been fully processed by the subscriber. Only then can the master consider
purging them from the log buffer and transaction log files.

A master database transaction log can grow much larger than it would on an
unreplicated database if there are changes to its subscriber state. When the subscriber
is in the start state, the master can purge logged data after it receives confirmation
that the information has been received by the subscriber. However, if a subscriber
becomes unavailable or is in the pause state, the log on the master database cannot be
flushed and the space used for logging can be exhausted. When the log space is
exhausted, subsequent updates on the master database are aborted. Use the
ttLogHolds built-in procedure to get information about replication log holds.

For more information about transaction log growth, see "Monitoring accumulation of
transaction log files" in Oracle TimesTen In-Memory Database Operations Guide.

Setting connection attributes for logging
LogBufMB specifies the maximum size of the in-memory log buffer in megabytes. This
buffer is flushed to a transaction log file on the disk when it becomes full. The
minimum size for LogBufMB is 8 times the value of LogBufParallelism.

You need to establish enough disk space for the transaction log files. There are two
settings that control the amount of disk space used by the log:

■ The LogFileSize setting in the DSN specifies the maximum size of a transaction
log file. If logging requirements exceed this value, additional transaction log files
with the same maximum size are created. If you set the LogFileSize to a smaller
value than LogBufMB, TimesTen automatically increases the LogFileSize to
match LogBufMB. For best performance, set LogBufMB and LogFileSize to
their maximum values.

Applying a replication scheme to a database

Setting Up a Replicated System 10-11

■ The log failure threshold setting specifies the maximum number of transaction log
files allowed to accumulate before the master assumes a subscriber has failed. The
threshold value is the number of transaction log files between the most recently
written to transaction log file and the earliest transaction log file being held for the
subscriber. For example, if the last record successfully received by all subscribers
was in Log File 1 and the last log record written to disk is at the beginning of Log
File 4, then replication is at least 2 transaction log files behind (the contents of Log
Files 2 and 3). If the threshold value is 2, then the master sets the subscriber to the
failed state after detecting the threshold value had been exceeded. This may
take up to 10 seconds. See "Setting the log failure threshold" on page 9-24 for more
information.

Because transactions are logged to disk, you can use bookmarks to detect the log
record identifiers of the update records that have been replicated to subscribers and
those that have been written to disk. To view the location of the bookmarks for the
subscribers associated with masterDSN, use the ttBookmark built-in procedure, as
described in "Show replicated log records" on page 12-9.

If a subscriber goes down and then comes back up before the threshold is reached,
then replication automatically "catches up" as the committed transactions in the
transaction log files following the bookmark are automatically transmitted. However,
if the threshold is exceeded, the master sets the subscriber to the failed state. A
failed subscriber must use ttRepAdmin -duplicate to copy the master database
and start over, as described in Chapter 11, "Managing Database Failover and
Recovery".

See Oracle TimesTen In-Memory Database Reference for more information about
TimesTen connection attributes, built-in procedures and utilities.

Applying a replication scheme to a database
Define the replication scheme as described in Chapter 9, "Defining Replication
Schemes". Save the CREATE REPLICATION statement in a SQL file.

After you have described the replication scheme in a SQL file, you can execute the SQL
on the database using the -f option to the ttIsql utility. The syntax is:

ttIsql -f schemefile.sql -connstr "dsn=DSN"

Example 10–1 Creating a replication scheme by executing a SQL file

If your replication scheme is described in a file called repscheme.sql, you can
execute the file on a DSN, called masterDSN, by entering:

> ttIsql -f repscheme.sql -connstr "dsn=masterDSN"

Under most circumstances, you should apply the same scheme to all of the replicated
databases. You must invoke a separate ttIsql command on each host to apply the
replication scheme.

Example 10–2 Executing a SQL file on each host

If your scheme includes the databases masterDSN on host S1, subscriber1DSN on
host S2, and subscriber2DSN on host S3, do the following:

On host S1, enter:

> ttIsql -f repscheme.sql -connstr "dsn=masterDSN"

On host S2, enter:

Duplicating a master database to a subscriber

10-12 Oracle TimesTen In-Memory Database Replication Guide

> ttIsql -f repscheme.sql -connstr "dsn=subscriber1DSN"

On host S3, enter:

> ttIsql -f repscheme.sql -connstr "dsn=subscriber2DSN"

You can also execute the SQL file containing your replication scheme from the ttIsql
command line after connecting to a database. For example:

Command> run repscheme.sql;

Duplicating a master database to a subscriber
The simplest method for populating a subscriber database is to duplicate the contents
of the master database. Duplicating a database in this manner is also essential when
recovering a failed database, as described in Chapter 11, "Managing Database Failover
and Recovery". You can use the ttRepAdmin -duplicate utility or the
ttRepDuplicateEx C function to duplicate a database.

To duplicate a database, these conditions must be fulfilled:

■ The instance administrator performs the duplicate operation.

■ The instance administrator user name must be the same on both instances
involved in the duplication.

■ You must provide the user name and password for a user with the ADMIN
privilege on the source database.

■ The target DSN cannot include client/server attributes.

To duplicate the contents of a master database to a subscriber database, complete these
tasks:

1. Create or alter a replication scheme to include the new subscriber database and its
host. See "Defining a replication scheme" on page 9-5 or "Creating and adding a
subscriber database" on page 13-5.

2. Apply the replication scheme to the master database. See "Applying a replication
scheme to a database" on page 10-11.

3. Start the replication agent for the master database. See "Starting and stopping the
replication agents" on page 10-13.

4. On the source database (the master), create a user and grant the ADMIN privilege
to the user:

CREATE USER ttuser IDENTIFIED BY ttuser;
User created.

GRANT admin TO ttuser;

5. Assume the user name of the instance administrator is timesten. Logged in as
timesten on the target host (the subscriber), duplicate database masterDSN on
host1 to subscriber1DSN:

ttRepAdmin -duplicate -from masterDSN -host host1 subscriber1DSN

Enter internal UID at the remote datastore with ADMIN privileges: ttuser
Enter password of the internal Uid at the remote datastore:

Enter ttuser when prompted for the password of the internal user at the remote
database.

Starting and stopping the replication agents

Setting Up a Replicated System 10-13

6. Start the replication agent on the subscriber database.

Configuring a large number of subscribers
A replication scheme can include up to 128 subscribers. A replication scheme with
propagator databases can have up to 128 propagators, and each propagator can have
up to 128 subscribers. An active standby pair replication scheme can include up to 127
read-only subscribers. If you are planning a replication scheme that includes a large
number of subscribers, then ensure the following:

■ The log buffer size should result in the value of LOG_FS_READS in the
SYS.MONITOR table being 0 or close to 0. This ensures that the replication agent
does not have to read any log records from disk. If the value of LOG_FS_READS is
increasing, then increase the log buffer size.

■ CPU resources are adequate. The replication agent on the master database spawns
a thread for every subscriber database. Each thread reads and processes the log
independently and needs adequate CPU resources to transmit to the subscriber
database.

Replicating databases across releases
Replication functions across releases only if the database of the more recent version of
TimesTen was upgraded using ttMigrate from a database of the older version of
TimesTen. A database created in the current version of TimesTen is not guaranteed to
replicate correctly with the older version.

For example, replication between a database created in TimesTen release 6.0 and a
database created in TimesTen release 11.2.1 is not supported. However, if one database
was created in TimesTen release 6.0, and the peer database was created in TimesTen
release 6.0 and then upgraded to TimesTen release 11.2.1, replication between them is
supported.

See "Database Upgrades" in Oracle TimesTen In-Memory Database Installation Guide.

Starting and stopping the replication agents
After you have defined a replication scheme, you can start the replication agents for
each database involved in the replication scheme. You must have the ADMIN privilege
to start or stop a replication agent.

You can start and stop a replication agent by using the ttAdmin utility with the
-repStart or -repStop option. You can also use the ttRepStart and ttRepStop

Note: The host entry can be identified with either the name of the
remote host or its TCP/IP address. If you identify hosts using TCP/IP
addresses, you must identify the address of the local host (host1 in
this example) by using the -localhost option.

You can specify the local and remote network interfaces for the source
and target hosts by using the -localIP and -remoteIP options of
ttRepAdmin -duplicate. If you do not specify one or both
network interfaces, TimesTen chooses them.

For details, see "ttRepAdmin" in Oracle TimesTen In-Memory Database
Reference.

Starting and stopping the replication agents

10-14 Oracle TimesTen In-Memory Database Replication Guide

built-in procedures to start and stop a replication agent from the ttIsql command
line.

Example 10–3 Starting and stopping the replication agent with ttAdmin

To start the replication agents for the DSNs named masterDSN and subscriberDSN,
enter:

ttAdmin -repStart masterDSN
ttAdmin -repStart subscriberDSN

To stop the replication agents, enter:

ttAdmin -repStop masterDSN
ttAdmin -repStop subscriberDSN

Example 10–4 Starting and stopping the replication agent from ttIsql

To start and stop the replication agent for the DSN named masterDSN, enter:

> ttIsql masterDSN
Command> call ttRepStart;
Command> call ttRepStop;

You can also use the ttAdmin utility to set the replication restart policy. By default the
policy is manual, which enables you to start and stop the replication agents as
described above. Alternatively, you can set the replication restart policy for a database
to always or norestart.

When the restart policy is always, the replication agent is automatically started when
the database is loaded into memory. See "Specifying a RAM policy" in Oracle TimesTen
In-Memory Database Operations Guide to determine when a database is loaded into
memory.

Example 10–5 Using ttAdmin to set the restart policy

To use ttAdmin to set the replication restart policy to always, enter:

ttAdmin -repPolicy always DSN

To reset the policy back to manual, enter:

ttAdmin -repPolicy manual DSN

Following a database invalidation, both manual and always policies cause the
replication agent to be automatically restarted. When the agent restarts automatically,
it is often the first connection to the database. This happens after a fatal error that, for
example, requires all applications to disconnect. The first connection to a database

Restart Policy
Start replication agent when
the TimesTen daemon starts

Restart replication agent on
errors or invalidation

always Yes Yes

manual No Yes

norestart No No

Note: The TimesTen daemon manages the replication agents. It must
be running to start or stop the replication agents.

Setting the replication state of subscribers

Setting Up a Replicated System 10-15

usually has to load the most recent checkpoint file and often needs to do recovery. For
a very large database, this process may take several minutes. During this period, all
activity on the database is blocked so that new connections cannot take place and any
old connections cannot finish disconnecting. This may also result in two copies of the
database existing at the same time because the old one stays around until all
applications have disconnected. For very large databases for which the first-connect
time may be significant, you may want to wait for the old database to become inactive
first before starting up the new one. You can do this by setting the restart policy to
norestart to specify that the replication agent is not to be automatically restarted.
For more information on setting policies that would prevent the database from being
reloaded, see "Specifying a RAM policy" in Oracle TimesTen In-Memory Database
Operations Guide to determine when a database is loaded into memory.

Setting the replication state of subscribers
The state of a subscriber replication agent is described by its master database. When
recovering a failed subscriber database, you must reset the replication state of the
subscriber database with respect to the master database it communicates with in a
replication scheme. You can reset the state of a subscriber database from either the
command line or your program:

■ From the command line, use ttRepAdmin -state to direct a master database to
reset the replication state of one of its subscriber databases.

■ From ttIsql, call the ttRepSubscriberStateSet built-in procedure to direct a
master database to reset the replication state of one or all of its subscriber
databases.

See "Monitoring Replication" on page 12-1 for information about querying the state of
a database.

A master database can set a subscriber database to either the start, pause, or stop
states. The database state appears as an integer value in the STATE column in the
TTREP.REPPEERS table, as shown in Table 10–2.

Table 10–2 Database states

State Description

start

STATE value: 0

Replication updates are collected and transmitted to the
subscriber database as soon as possible. If replication for the
subscriber database is not operational, the updates are saved in
the transaction log files until they can be sent.

pause

STATE value: 1

Replication updates are retained in the log with no attempt to
transmit them. Transmission begins when the state is changed to
start

stop

STATE value: 2

Replication updates are discarded without being sent to the
subscriber database. Placing a subscriber database in the stop
state discards any pending updates from the master's
transaction log.

failed

STATE value: 4

Replication to a subscriber is considered failed because the
threshold limit (log data) has been exceeded. This state is set by
the system is a transitional state before the system sets the state
to stop. Applications that connect to a failed database receive
a warning. See "General failover and recovery procedures" on
page 11-1 for more information.

Setting the replication state of subscribers

10-16 Oracle TimesTen In-Memory Database Replication Guide

When a master database sets one of its subscribers to the start state, updates for the
subscriber are retained in the master's log. When a subscriber is in the stop state,
updates intended for it are discarded.

When a subscriber is in the pause state, updates for it are retained in the master's log,
but are not transmitted to the subscriber database. When a master transitions a
subscriber from pause to start, the backlog of updates stored in the master's log is
transmitted to the subscriber. (There is an exception to this, which is described in
Chapter 11, "Managing Database Failover and Recovery".) If a master database is
unable to establish a connection to a stated subscriber, the master periodically
attempts to establish a connection until successful.

Example 10–6 Using ttRepAdmin to set the subscriber state

To use ttRepAdmin from the command line to direct the masterds master database
to set the state of the subscriberds subscriber database to stop:

ttRepAdmin -dsn masterds -receiver -name subscriberds -state stop

Example 10–7 Using ttRepSubscriberStateSet to set the subscriber state

On the master database, call the ttRepSubscriberStateSet built-in procedure to
set the state of the subscriber database (subscriberds ON system1) in the
repscheme replication scheme to stop:

Command> CALL ttRepSubscriberStateSet('repscheme', 'repl',
 'subscriberds', 'system1', 2);

Only ttRepSubscriberStateSet can be used to set all of the subscribers of a
master to a particular state.The ttRepAdmin utility does not have any equivalent
functionality.

Note: If you have multiple subscribers with the same name on
different hosts, use the -host option of the ttRepAdmin utility to
identify the host for the subscriber that you want to modify.

11

Managing Database Failover and Recovery 11-1

11Managing Database Failover and Recovery

This chapter applies to all replication schemes, including active standby pairs.
However, TimesTen integration with Oracle Clusterware is the best way to monitor
active standby pairs. See Chapter 7, "Using Oracle Clusterware to Manage Active
Standby Pairs".

This chapter includes these topics:

■ Overview of database failover and recovery

■ General failover and recovery procedures

■ Recovering a failed database

■ Recovering nondurable databases

■ Writing a failure recovery script

Overview of database failover and recovery
A fundamental element in the design of a highly available system is the ability to
recover quickly from a failure. Failures may be related to hardware problems such as
system failures or network failures. Software failures include operating system failure,
application failure, database failure and operator error.

Your replicated system must employ a cluster manager or custom software to detect
such failures and, in the event of a failure involving a master database, redirect the
user load to one of its subscribers. The focus of this discussion is on the TimesTen
mechanisms that an application or cluster manager can use to recover from failures.

Unless the replication scheme is configured to use the return twosafe service,
TimesTen replicates updates only after the original transaction commits to the master
database. If a subscriber database is inoperable or communication to a subscriber
database fails, updates at the master are not impeded. During outages at subscriber
systems, updates intended for the subscriber are saved in the TimesTen transaction
log.

General failover and recovery procedures
The procedures for managing failover and recovery depend primarily on:

■ The replication scheme

Note: The procedures described in this chapter require the ADMIN
privilege.

General failover and recovery procedures

11-2 Oracle TimesTen In-Memory Database Replication Guide

■ Whether the failure occurred on a master or subscriber database

■ Whether the threshold for the transaction log on the master is exhausted before the
problem is resolved and the databases reconnected

Subscriber failures
In a default asynchronous replication scheme, if a subscriber database becomes
inoperable or communication to a subscriber database fails, updates at the master are
not impeded and the cluster manager does not have to take any immediate action.

During outages at subscriber systems, updates intended for the subscriber are saved in
the transaction log on the master. If the subscriber agent reestablishes communication
with its master before the master reaches its FAILTHRESHOLD, the updates held in the
log are automatically transferred to the subscriber and no further action is required.
See "Setting the log failure threshold" on page 9-24 for details on how to establish the
FAILTHRESHOLD value for the master database.

If the FAILTHRESHOLD is exceeded, the master sets the subscriber to the failed state
and it must be recovered, as described in "Recovering a failed database" on page 11-5.
Any application that connects to the failed subscriber receives a tt_
ErrReplicationInvalid (8025) warning indicating that the database has been
marked failed by a replication peer.

An application can use the ODBC SQLGetInfo function to check if the subscriber
database it is connected to has been set to the failed state. The SQLGetInfo
function includes a TimesTen-specific infotype, TT_REPLICATION_INVALID, that
returns a 32-bit integer value of '1' if the database is failed, or '0' if not failed. Since the
infotype TT_REPLICATION_INVALID is specific to TimesTen, all applications using it
need to include the timesten.h file in addition to the other ODBC include files.

Example 11–1 Checking whether a database has been set to the failed state

Check if the database identified by the hdbc handle has been set to the failed state.

SQLINTEGER retStatus;

SQLGetInfo(hdbc, TT_REPLICATION_INVALID,
 (PTR)&retStatus, NULL, NULL);

Master failures
The cluster manager plays a more central role if a failure involves the master database.
If a master database fails, the cluster manager must detect this event and redirect the
user load to one of its surviving databases. This surviving subscriber then becomes the
master, which continues to accept transactions and replicates them to the other
surviving subscriber databases. If the failed master and surviving subscriber are
configured in a bidirectional manner, transferring the user load from a failed master to
a subscriber does not require that you make any changes to your replication scheme.
However, when using unidirectional replication or complex schemes, such as those
involving propagators, you may have to issue one or more ALTER REPLICATION

Note: If the failed subscriber is configured to use a return service,
you must first disable return service blocking, as described in
"Managing return service timeout errors and replication state
changes" on page 9-18.

General failover and recovery procedures

Managing Database Failover and Recovery 11-3

statements to reconfigure the surviving subscriber as the "new master" in your scheme.
See "Replacing a master database" on page 13-6 for an example.

When the problem is resolved, if you are not using the bidirectional configuration or
the active standby pair described in "Automatic catch-up of a failed master database"
on page 11-3, you must recover the master database as described in "Recovering a
failed database" on page 11-5.

After the database is back online, the cluster manager can either transfer the user load
back to the original master or reestablish it as a subscriber for the "acting master."

Automatic catch-up of a failed master database
The master catch-up feature automatically restores a failed master database from a
subscriber database without the need to invoke the ttRepAdmin -duplicate
operation described in "Recovering a failed database" on page 11-5.

The master catch-up feature needs no configuration, but it can be used only in the
following types of configurations:

■ A single master replicated in a bidirectional manner to a single subscriber

■ An active standby pair that is configured with RETURN TWOSAFE

For replication schemes that are not active standby pairs, the following must be true:

■ The ELEMENT type is DATASTORE.

■ TRANSMIT NONDURABLE or RETURN TWOSAFE must be enabled.

■ All replicated transactions must be committed nondurably. They must be
transmitted to the remote database before they are committed on the local
database. For example, if the replication scheme is configured with RETURN
TWOSAFE BY REQUEST and any transaction is committed without first enabling
RETURN TWOSAFE, master catch-up may not occur after a failure of the master.

When the master replication agent is restarted after a crash or invalidation, any lost
transactions that originated on the master are automatically reapplied from the
subscriber to the master (or from the standby to the active in an active standby pair).
No connections are allowed to the master database until it has completely caught up
with the subscriber. Applications attempting to connect to a database during the
catch-up phase receive an error that indicates a catch-up is in progress. The only
exception is connecting to a database with the ForceConnect first connection
attribute set in the DSN.

When the catch-up phase is complete, the application can connect to the database. An
SNMP trap and message to the system log indicate the completion of the catch-up
phase.

If one of the databases is invalidated or crashes during the catch-up process, the
catch-up phase is resumed when the database comes back up.

Master catch-up can fail under these circumstances:

■ The failed database is offline long enough for the failure threshold to be exceeded
on the subscriber database (the standby database in an active standby pair).

■ Dynamic load operations are taking place on the active database in an active
standby pair when the failure occurs. RETURN TWOSAFE is not enabled for
dynamic load operations even though it is enabled for the active database. The
database failure causes the dynamic load transactions to be trapped and RETURN
TWOSAFE to fail.

General failover and recovery procedures

11-4 Oracle TimesTen In-Memory Database Replication Guide

When master catch-up is required for an active standby pair
TimesTen error 8110 (Connection not permitted. This store requires
Master Catchup.) indicates that the standby database is ahead of the active
database and that master catch-up must occur before replication can resume.

When using master catch-up with an active standby pair, the standby database must
be failed over to become the new active database. If the old active database can
recover, it becomes the new standby database. If it cannot recover, the old active
database must be destroyed and the new standby database must be created by
duplicating the new active database. See "When replication is return twosafe" on
page 4-4 for more information about recovering from a failure of the active database
when RETURN TWOSAFE is configured (required for master catch-up).

In an active standby pair with RETURN TWOSAFE configured, it is possible to have a
trapped transaction. A trapped transaction occurs when the new standby database has a
transaction present that is not present on the new active database after failover. Error
16227 (Standby store has replicated transactions not present on
the active) is one indication of trapped transactions. You can verify the number of
trapped transactions by checking the number of records in replicated tables on each
database during the manual recovery process. For example, enter a statement similar
to the following:

SELECT COUNT(*) FROM reptable;

When there are trapped transactions, perform these tasks for recovery:

1. Use the ttRepStateSet built-in procedure to change the state on the standby
database to 'ACTIVE'.

2. Destroy the old active database.

3. Use ttRepAdmin -duplicate to create a new standby database from the new
active database, which has all of the transactions. See "Duplicating a database" on
page 4-2.

Failures in bidirectional distributed workload schemes
You can distribute the workload over multiple bidirectionally replicated databases,
each of which serves as both master and subscriber. When recovering a
master/subscriber database, the log on the failed database may present problems
when you restart replication. See "Bidirectional distributed workload scheme" on
page 9-30.

If a database in a distributed workload scheme fails and work is shifted to a surviving
database, the information in the surviving database becomes more current than that in
the failed database. If replication is restarted at the failed system before the log failure
threshold has been reached on the surviving database, then both databases attempt to
update one another with the contents of their transaction logs. In this case, the older
updates in the transaction log on the failed database may overwrite more recent data
on the surviving system.

There are two ways to recover in such a situation:

■ If the timestamp conflict resolution rules described in Chapter 14, "Resolving
Replication Conflicts" are sufficient to guarantee consistency for your application,
then you can restart the failed system and allow the updates from the failed
database to propagate to the surviving database. The conflict resolution rules
prevent more recent updates from being overwritten.

Recovering a failed database

Managing Database Failover and Recovery 11-5

■ Re-create the failed database, as described in "Recovering a failed database" on
page 11-5. If the database must be re-created, the updates in the log on the failed
database that were not received by the surviving database cannot be identified or
restored. In the case of several surviving databases, you must select which of the
surviving databases is to be used to re-create the failed database. It is possible that
at the time the failed database is re-created, the selected surviving database may
not have received all updates from the other surviving databases. This results in
diverging databases. The only way to prevent this situation is to re-create the
other surviving databases from the selected surviving database.

Network failures
In the event of a temporary network failure, you do not need to perform any specific
action to continue replication. The replication agents that were in communication
attempt to reconnect every few seconds. If the agents reconnect before the master
database runs out of log space, the replication protocol makes sure they do not miss or
repeat any replication updates. If the network is unavailable for a longer period and
the log failure threshold has been exceeded for the master log, you need to recover the
subscriber as described in "Recovering a failed database" on page 11-5.

Failures involving sequences
After a network link failure, if replication is allowed to recover by replaying queued
logs, you do not need to take any action.

However, if the failed host was down for a significant amount of time, you must use
the ttRepAdmin -duplicate command to repopulate the database on the failed
host with transactions from the surviving host, as sequences are not rolled back during
failure recovery. In this case, the ttRepAdmin -duplicate command copies the
sequence definitions from one database to the other.

Recovering a failed database
If the databases are configured in a bidirectional replication scheme, a failed master
database is automatically brought up to date from the subscriber. See "Automatic
catch-up of a failed master database" on page 11-3. Automatic catch-up also applies to
recovery of master databases in active standby pairs.

If a restarted database cannot be recovered from its master's transaction log so that it is
consistent with the other databases in the replicated system, you must re-create the
database from one of its replication peers. Use command line utilities or the TimesTen
Utility C functions. See "Recovering a failed database from the command line" on
page 11-6 and "Recovering a failed database from a C program" on page 11-6.

In the event of a subscriber failure, if any tables are configured with a return service,
commits on those tables in the master database are blocked until the return service
timeout period expires. To avoid this, you can establish a return service failure and
recovery policy in your replication scheme, as described in"Managing return service
timeout errors and replication state changes" on page 9-18. If you are using the
RETURN RECEIPT service, an alternative is to use ALTER REPLICATION and set the
NO RETURN attribute to disable return receipt until the subscriber is restored and
caught up. Then you can submit another ALTER REPLICATION statement to
re-establish RETURN RECEIPT.

Note: It is not necessary to re-create the DSN for the failed database.

Recovering a failed database

11-6 Oracle TimesTen In-Memory Database Replication Guide

Recovering a failed database from the command line
If the databases are fully replicated, you can use the ttDestroy utility to remove the
failed database from memory and ttRepAdmin -duplicate to re-create it from a
surviving database. If the database contains any cache groups, you must also use the
-keepCG option of ttRepAdmin. See "Duplicating a database" on page 4-2.

Example 11–2 Recovering a failed database

To recover a failed database, subscriberds, from a master named masterds on
host system1, enter:

> ttdestroy /tmp/subscriberds

> ttrepadmin -dsn subscriberds -duplicate -from masterds -host "system1" -uid
ttuser

You will be prompted for the password of ttuser.

After re-creating the database with ttRepAdmin -duplicate, the first connection to
the database reloads it into memory. To improve performance when duplicating large
databases, you can avoid the reload step by using the ttRepAdmin -ramload option
to keep the database in memory after the duplicate operation.

Example 11–3 Keeping a database in memory when recovering it

To recover a failed database, subscriberds, from a master named masterds on
host system1, and to keep the database in memory and restart replication after the
duplicate operation, enter:

> ttdestroy /tmp/subscriberds

> ttrepadmin -dsn subscriberds -duplicate -ramload -from masterds -host "system1"
-uid ttuser -setmasterrepstart

You will be prompted for the password of ttuser.

Recovering a failed database from a C program
You can use the C functions provided in the TimesTen utility library to recover a failed
database programmatically.

If the databases are fully replicated, you can use ttDestroyDataStore function to
remove the failed database and the ttRepDuplicateEx function to re-create it from
a surviving database.

Note: ttRepAdmin -duplicate is supported only between
identical and patch TimesTen releases. The major and minor release
numbers must be the same.

Note: After duplicating a database with the ttRepAdmin
-duplicate -ramLoad options, the RAM Policy for the database is
manual until explicitly reset by ttAdmin -ramPolicy or the
ttRamPolicy function.

Writing a failure recovery script

Managing Database Failover and Recovery 11-7

Example 11–4 Recovering and starting a failed database

To recover and start a failed database, named subscriberds on host system2, from
a master, named masterds on host system1, enter:

int rc;
ttutilhandle utilhandle;
ttrepduplicateexarg arg;
memset(&arg, 0, sizeof(arg));
arg.size = sizeof(ttrepduplicateexarg);
arg.flags = tt_repdup_repstart | tt_repdup_ramload;
arg.uid=ttuser;
arg.pwd=ttuser;
arg.localhost = "system2";
rc = ttdestroydatastore(utilhandle, "subscriberds", 30);
rc = ttrepduplicateex(utilhandle, "dsn=subscriberds",
 "masterds", "system1", &arg);

In this example, the timeout for the ttDestroyDataStore operation is 30 seconds.
The last parameter of the ttRepDuplicateEx function is an argument structure
containing two flags:

■ TT_REPDUP_RESTART to set the subscriberds database to the start state
after the duplicate operation is completed

■ TT_REPDUP_RAMLOAD to set the RAM policy to manual and keep the database in
memory

See "TimesTen Utility API" in Oracle TimesTen In-Memory Database C Developer's Guide
for the complete list of the functions provided in the TimesTen C language utility
library.

Recovering nondurable databases
If your database is configured with the TRANSMIT NONDURABLE option in a
bidirectional configuration, you do not need to take any action to recover a failed
master database. See "Automatic catch-up of a failed master database" on page 11-3.

For other types of configurations, if the master database configured with the
TRANSMIT NONDURABLE option fails, you must use ttRepAdmin-duplicate or
ttRepDuplicateEx to re-create the master database from the most current
subscriber database. If the application attempts to reconnect to the master database
without first performing the duplicate operation, the replication agent recovers the
database, but any attempt to connect results in an error that advises you to perform
the duplicate operation. To avoid this error, the application must reconnect with the
ForceConnect first connection attribute set to 1.

Writing a failure recovery script
Upon detecting a failure, the cluster manager should invoke a script that effectively
executes the procedure shown by the pseudocode in Example 11–5.

Note: When the TT_REPDUP_RAMLOAD flag is used with
ttRepDuplicateEx, the RAM policy for the duplicate database is
manual until explicitly reset by the ttRamPolicy function or
ttAdmin -ramPolicy.

Writing a failure recovery script

11-8 Oracle TimesTen In-Memory Database Replication Guide

Example 11–5 Failure recovery pseudocode

Detect problem {
 if (Master == unavailable) {
 FailedDataDatabase = Master
 FailedDSN = Master_DSN
 SurvivorDatabase = Subscriber
 switch users to SurvivorDatabase
 }
else {
 FailedDatabase = Subscriber
 FailedDSN = Subscriber_DSN
 SurvivorDatabase = Master
 }
}
Fix problem....
If (Problem resolved) {
 Get state for FailedDatabase
 if (state == "failed") {
 ttDestroy FailedDatabase
 ttRepAdmin -dsn FailedDSN -duplicate
 -from SurvivorDatabase -host SurvivorHost
 -setMasterRepStart
 -uid ttuser
 -pwd ttuser
 }
 else {
 ttAdmin -repStart FailedDSN
 }
 while (backlog != 0) {
 wait
 }
}

Switch users back to Master.

This applies to either the master or subscriber databases. If the master fails, you may
lose some transactions.

12

Monitoring Replication 12-1

12Monitoring Replication

This chapter describes some of the TimesTen utilities and procedures you can use to
monitor the replication status of your databases.

You can monitor replication from both the command line and within your programs.
The ttStatus and ttRepAdmin utilities described in this chapter are useful for
command line queries. To monitor replication from your programs, you can use the
TimesTen built-in procedures described in Oracle TimesTen In-Memory Database
Reference or create your own SQL SELECT statements to query the replication tables
described in Oracle TimesTen In-Memory Database System Tables and Views Reference.

This chapter includes the following topics:

■ Show state of replication agents

■ Show master database information

■ Show subscriber database information

■ Show the configuration of replicated databases

■ Show replicated log records

■ Using ttRepAdmin to show replication status

■ Checking the status of return service transactions

■ Improving replication performance

Show state of replication agents
You can display information about the current state of the replication agents:

■ Using ttStatus to obtain replication agent status

■ Using ttAdmin -query to confirm policy settings

■ Using ttDataStoreStatus to obtain replication agent status

You can also obtain the state of specific replicated databases as described in "Show
subscriber database information" on page 12-4 and "Show the configuration of
replicated databases" on page 12-6.

Note: You can only access the TimesTen SYS and TTREP tables for
queries. Do not try to alter the contents of these tables.

Show state of replication agents

12-2 Oracle TimesTen In-Memory Database Replication Guide

Using ttStatus to obtain replication agent status
Use the ttStatus utility to confirm that the replication agent is started for the master
database.

Example 12–1 Using ttStatus to obtain replication agent status

> ttStatus
TimesTen status report as of Thu Aug 11 17:05:23 2011
Daemon pid 18373 port 4134 instance ttuser
TimesTen server pid 18381 started on port 4136
--
Data store /tmp/masterds
There are 16 connections to the data store
Shared Memory KEY 0x0201ab43 ID 5242889
PL/SQL Memory KEY 0x0301ab43 ID 5275658 Address 0x10000000
Type PID Context Connection Name ConnID
Process 20564 0x081338c0 masterds 1
Replication 20676 0x08996738 LOGFORCE 5
Replication 20676 0x089b69a0 REPHOLD 2
Replication 20676 0x08a11a58 FAILOVER 3
Replication 20676 0x08a7cd70 REPLISTENER 4
Replication 20676 0x08ad7e28 TRANSMITTER 6
Subdaemon 18379 0x080a11f0 Manager 2032
Subdaemon 18379 0x080fe258 Rollback 2033
Subdaemon 18379 0x081cb818 Checkpoint 2036
Subdaemon 18379 0x081e6940 Log Marker 2035
Subdaemon 18379 0x08261e70 Deadlock Detector 2038
Subdaemon 18379 0xae100470 AsyncMV 2040
Subdaemon 18379 0xae11b508 HistGC 2041
Subdaemon 18379 0xae300470 Aging 2039
Subdaemon 18379 0xae500470 Flusher 2034
Subdaemon 18379 0xae55b738 Monitor 2037
Replication policy : Manual
Replication agent is running.
Cache Agent policy : Manual
PL/SQL enabled.

Using ttAdmin -query to confirm policy settings
Use the ttAdmin utility with the -query option to confirm the policy settings for a
database, including the replication restart policy described in "Starting and stopping
the replication agents" on page 10-13.

Example 12–2 Using ttAdmin to confirm policy settings

> ttAdmin -query masterDSN
RAM Residence Policy : inUse
Manually Loaded In Ram : False
Replication Agent Policy : manual
Replication Manually Started : True
Cache Agent Policy : manual
Cache Agent Manually Started : False

Using ttDataStoreStatus to obtain replication agent status
To obtain the status of the replication agents from a program, use the
ttDataStoreStatus built-in procedure.

Show master database information

Monitoring Replication 12-3

Example 12–3 Calling ttDataStoreStatus

Call ttDataStoreStatus to obtain the status of the replication agents for the
masterds databases:

> ttIsql masterds
Command> CALL ttDataStoreStatus('/tmp/masterds');
< /tmp/masterds, 964, 00000000005D8150, subdaemon, Global\DBI3b3234c0.0.SHM.35 >
< /tmp/masterds, 1712, 00000000016A72E0, replication, Global\DBI3b3234c0.0.SHM.35
>
< /tmp/masterds, 1712, 0000000001683DE8, replication, Global\DBI3b3234c0.0.SHM.35
>
< /tmp/masterds, 1620, 0000000000608128, application, Global\DBI3b3234c0.0.SHM.35
>
4 rows found.

The output from ttDataStoreStatus is similar to that shown for the ttStatus
utility in "Using ttStatus to obtain replication agent status" on page 12-2.

Show master database information
You can display information for a master database:

■ Using ttRepAdmin to display information about the master database

■ Querying replication tables to obtain information about a master database

Using ttRepAdmin to display information about the master database
Use the ttRepAdmin utility with the -self -list options to display information
about the master database:

ttRepAdmin -dsn masterDSN -self -list

Example 12–4 Using ttRepAdmin to display information about a master database

This example shows the output for the master database described in "Multiple
subscriber schemes with return services and a log failure threshold" on page 9-28.

> ttRepAdmin -dsn masterds -self -list
Self host "server1", port auto, name "masterds", LSN 0/2114272

The following table describes the fields.

Field Description

host The name of the host for the database.

port TCP/IP port used by a replication agent of another
database to receive updates from this database. A
value of 0 (zero) indicates replication has
automatically assigned the port.

name Name of the database

Log file/Replication hold LSN Indicates the oldest location in the transaction log that
is held for possible transmission to the subscriber. A
value of -1/-1 indicates replication is in the stop
state with respect to all subscribers.

Show subscriber database information

12-4 Oracle TimesTen In-Memory Database Replication Guide

Querying replication tables to obtain information about a master database
Use the following SELECT statement to query the TTREP.TTSTORES and
TTREP.REPSTORES replication tables to obtain information about a master database:

SELECT t.host_name, t.rep_port_number, t.tt_store_name
 FROM ttrep.ttstores t, ttrep.repstores s
 WHERE t.is_local_store = 0x01
 AND t.tt_store_id = s.tt_store_id;

This is the output of the SELECT statement for the master database described in
"Multiple subscriber schemes with return services and a log failure threshold" on
page 9-28. The fields are the host name, the replication port number, and the database
name.

< server1, 0, masterds>

Show subscriber database information
Replication uses the TimesTen transaction log to retain information that must be
transmitted to subscriber sites. When communication to subscriber databases is
interrupted or the subscriber sites are down, the log data accumulates. Part of the
output from the queries described in this section allows you to see how much log data
has accumulated on behalf of each subscriber database and the amount of time since
the last successful communication with each subscriber database.

You can display information for subscriber databases:

■ Using ttRepAdmin to display subscriber status

■ Using ttReplicationStatus to display subscriber status

■ Querying replication tables to display information about subscribers

Using ttRepAdmin to display subscriber status
To display information about subscribers, use the ttRepAdmin utility with the
-receiver -list options:

ttRepAdmin -dsn masterDSN -receiver -list

Example 12–5 Using ttRepAdmin to display information about subscribers

This example shows the output for the subscribers described in "Multiple subscriber
schemes with return services and a log failure threshold" on page 9-28.

> ttRepAdmin -dsn masterds -receiver -list
Peer name Host name Port State Proto
---------------- ------------------------ ------ ------- -----
subscriber1ds server2 Auto Start 10

Last Msg Sent Last Msg Recv Latency TPS RecordsPS Logs
------------- ------------- ------- ------- --------- ----
0:01:12 - 19.41 5 5 52 2

Peer name Host name Port State Proto
---------------- ------------------------ ------ ------- -----
subscriber2ds server3 Auto Start 10

Last Msg Sent Last Msg Recv Latency TPS RecordsPS Logs
------------- ------------- ------- ------- --------- ----
0:01:04 - 20.94 4 48 2

Show subscriber database information

Monitoring Replication 12-5

The first line of the display contains the subscriber definition. The following row of the
display contains latency and rate information, as well as the number of transaction log
files being retained on behalf of this subscriber. The latency for subscriber1ds is
19.41 seconds, and it is 2 logs behind the master. This is a high latency, indicating a
problem if it continues to be high and the number of logs continues to increase.

If you have more than one scheme specified in the TTREP.REPLICATIONS table, you
must use the -scheme option to specify which scheme you wish to list. Otherwise you
receive the following error:

Must specify -scheme to identify which replication scheme to use

Using ttReplicationStatus to display subscriber status
You can obtain more detailed status for a specific replicated database by using the
ttReplicationStatus built-in procedure.

Querying replication tables to display information about subscribers
To obtain information about a master's subscribers from a program, use the following
SELECT statement to query the TTREP.REPPEERS, TTREP.TTSTORES, and
SYS.MONITOR tables:

SELECT t1.tt_store_name, t1.host_name, t1.rep_port_number,
p.state, p.protocol, p.timesend, p.timerecv, p.latency,
p.tps, p.recspersec, t3.last_log_file - p.sendlsnhigh + 1
 FROM ttrep.reppeers p, ttrep.ttstores t1, ttrep.ttstores t2, sys.monitor t3
 WHERE p.tt_store_id = t1.tt_store_id
 AND t2.is_local_store = 0X01
 AND p.subscriber_id = t2.tt_store_id
 AND p.replication_name = 'repscheme'
 AND p.replication_owner = 'repl'
 AND (p.state = 0 OR p.state = 1);

The following is sample output from the 3 statement above:

< subscriber1ds, server2, 0, 0, 7, 1003941635, 0, -1.00000000000000, -1, -1, 1 >
< subscriber2ds, server3, 0, 0, 7, 1003941635, 0, -1.00000000000000, -1, -1, 1 >

The output from either the ttRepAdmin utility or the SELECT statement contains the
following fields:

Field Description

Peer name Name of the subscriber database

Host name Name of the machine that hosts the subscriber

Port TCP/IP port used by the subscriber agent to receive updates from
the master. A value of 0 indicates replication has automatically
assigned the port.

State Current replication state of the subscriber with respect to its master
database (see "Show subscriber database information" on page 12-4
for information).

Protocol Internal protocol used by replication to communicate between this
master and its subscribers. You can ignore this value.

Last message sent Time (in seconds) since the master sent the last message to the
subscriber. This includes the "heartbeat" messages sent between the
databases.

Show the configuration of replicated databases

12-6 Oracle TimesTen In-Memory Database Replication Guide

Show the configuration of replicated databases
You can display the configuration of your replicated databases:

■ Using the ttIsql repschemes command to display configuration information

■ Using ttRepAdmin to display configuration information

■ Querying replication tables to display configuration information

Using the ttIsql repschemes command to display configuration information
To display the configuration of your replicated databases from the ttIsql prompt,
use the repschemes command:

Command> repschemes;

Example 12–6 shows the configuration output from the replication scheme shown in
"Propagation scheme" on page 9-30.

Example 12–6 Output from ttIsql repschemes command

Replication Scheme PROPAGATOR:

 Element: A
 Type: Table TAB
 Master Store: CENTRALDS on FINANCE Transmit Durable
 Subscriber Store: PROPDS on NETHANDLER

 Element: B
 Type: Table TAB
 Propagator Store: PROPDS on NETHANDLER Transmit Durable
 Subscriber Store: BACKUP1DS on BACKUPSYSTEM1
 Subscriber Store: BACKUP2DS on BACKUPSYSTEM2

Store: BACKUP1DS on BACKUPSYSTEM1
 Port: (auto)

Last message
received

Time (in seconds) since this subscriber received the last message
from the master.

Latency The average latency time (in seconds) between when the master
sends a message and when it receives the final acknowledgement
from the subscriber. (See note below.)

Transactions per
second

The average number of transactions per second that are committed
on the master and processed by the subscriber. (See note below.)

Records per second The average number of transmitted records per second. (See note
below.)

Logs Number of transaction log files the master database is retaining for
a subscriber.

Note: Latency, TPS, and RecordsPS report averages detected
while replicating a batch of records. These values can be unstable if
the workload is not relatively constant. A value of -1 indicates the
master's replication agent has not yet established communication with
its subscriber replication agents or sent data to them.

Field Description

Show the configuration of replicated databases

Monitoring Replication 12-7

 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled

Store: BACKUP2DS on BACKUPSYSTEM2
 Port: (auto)
 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled

Store: CENTRALDS on FINANCE
 Port: (auto)
 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled

Store: PROPDS on NETHANDLER
 Port: (auto)
 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled

Using ttRepAdmin to display configuration information
To display the configuration of your replicated databases, use the ttRepAdmin utility
with the -showconfig option:

ttRepAdmin -showconfig -dsn masterDSN

Example 12–7 shows the configuration output from the propagated databases
configured by the replication scheme shown in "Propagation scheme" on page 9-30.
The propds propagator shows a latency of 19.41 seconds and is 2 logs behind the
master.

Example 12–7 ttRepAdmin output

> ttRepAdmin -showconfig -dsn centralds
Self host "finance", port auto, name "centralds", LSN 0/155656, timeout 120,
threshold 0

List of subscribers

Peer name Host name Port State Proto
---------------- ------------------------ ------ ------- -----
propds nethandler Auto Start 10

Last Msg Sent Last Msg Recv Latency TPS RecordsPS Logs
------------- ------------- ------- ------- --------- ----
0:01:12 - 19.41 5 52 2

List of tables and subscriptions

Table details

Table : tab Timestamp updates : -

Master Name Subscriber Name
----------- -------------
centralds propds

Show the configuration of replicated databases

12-8 Oracle TimesTen In-Memory Database Replication Guide

Table details

Table : tab Timestamp updates : -

Master Name Subscriber name
----------- -------------
propds backup1ds
propds backup2ds

See "Querying replication tables to display information about subscribers" on
page 12-5 for the meaning of the "List of subscribers" fields. The "Table details" fields
list the table and the names of its master (Sender) and subscriber databases.

Querying replication tables to display configuration information
Use the following SELECT statements to query the TTREP.TTSTORES,
TTREP.REPSTORES, TTREP.REPPEERS, SYS.MONITOR, TTREP.REPELEMENTS, and
TTREP.REPSUBSCRIPTIONS tables for configuration information:

SELECT t.host_name, t.rep_port_number, t.tt_store_name, s.peer_timeout,
s.fail_threshold
 FROM ttrep.ttstores t, ttrep.repstores s
 WHERE t.is_local_store = 0X01
 AND t.tt_store_id = s.tt_store_id;

SELECT t1.tt_store_name, t1.host_name, t1.rep_port_number,
 p.state, p.protocol, p.timesend, p.timerecv, p.latency,
 p.tps, p.recspersec, t3.last_log_file - p.sendlsnhigh + 1
 FROM ttrep.reppeers p, ttrep.ttstores t1, ttrep.ttstores t2, sys.monitor t3
 WHERE p.tt_store_id = t2.tt_store_id
 AND t2.is_local_store = 0X01
 AND p.subscriber_id = t1.tt_store_id
 AND (p.state = 0 OR p.states = 1);

SELECT ds_obj_owner, DS_OBJ_NAME, t1.tt_store_name,t2.tt_store_name
 FROM ttrep.repelements e, ttrep.repsubscriptions s,
 ttrep.ttstores t1, ttrep.ttstores t2
 WHERE s.element_name = e.element_name
 AND e.master_id = t1.tt_store_id
 AND s.subscriber_id = t2.tt_store_id
 ORDER BY ds_obj_owner, ds_obj_name;

Example 12–8 Output from queries

The output from the queries refer to the databases configured by the replication
scheme shown in "Propagation scheme" on page 9-30.

The output from the first query might be:

< finance, 0, centralds, 120, 0 >

It shows the host name, port number and the database name. The fourth value (120) is
the TIMEOUT value that defines the amount of time a database waits for a response
from another database before resending a message. The last value (0) is the log failure
threshold value described in "Setting the log failure threshold" on page 9-24.

The output from the second query might be:

< propds, nethandler, 0, 0, 7, 1004378953, 0, -1.00000000000000, -1, -1, 1 >
See "Querying replication tables to display information about subscribers" on
page 12-5 for a description of the fields.

Show replicated log records

Monitoring Replication 12-9

The output from the last query might be:

< repl, tab, centralds, propds >
< repl, tab, propds, backup1ds >
< repl, tab, propds, backup2ds >

The rows show the replicated table and the names of its master (sender) and
subscriber (receiver) databases.

Show replicated log records
In a replicated database, transactions remain in the log buffer and transaction log files
until the master replication agent confirms they have been fully processed by the
subscriber. Only then can the master consider purging them from the log buffer and
transaction log files. When the log space is exhausted, subsequent updates on the
master database are aborted. Use the ttLogHolds built-in procedure to get
information about replication log holds. For more information about transaction log
growth, see "Monitoring accumulation of transaction log files" in Oracle TimesTen
In-Memory Database Operations Guide.

Transactions are stored in the log in the form of log records. You can use bookmarks to
detect which log records have or have not been replicated by a master database.

A bookmark consists of log sequence numbers (LSNs) that identify the location of
particular records in the transaction log that you can use to gauge replication
performance. The LSNs associated with a bookmark are: hold LSN, last written LSN,
and last LSN forced to disk. The hold LSN describes the location of the lowest (or oldest)
record held in the log for possible transmission to a subscriber. You can compare the
hold LSN with the last written LSN to determine the amount of data in the transaction
log that have not yet been transmitted to the subscribers. The last LSN forced to disk
describes the last records saved in a transaction log file on disk.

A more accurate way to monitor replication to a particular subscriber is to look at the
send LSN for the subscriber, which consists of the SENDLSNHIGH and SENDLSNLOW
fields in the TTREP.REPPEERS table. In contrast to the send LSN value, the hold LSN
returned in a bookmark is computed every 10 seconds to describe the minimum send
LSN for all the subscribers, so it provides a more general view of replication progress
that does not account for the progress of replication to the individual subscribers.
Because replication acknowledgements are asynchronous for better performance, the
send LSN can also be some distance behind. Nonetheless, the send LSN for a
subscriber is the most accurate value available and is always ahead of the hold LSN.

You can display replicated log records:

■ Using ttRepAdmin to display bookmark location

■ Using ttBookMark to display bookmark location

Using ttRepAdmin to display bookmark location
Use the ttRepAdmin utility with the -bookmark option to display the location of
bookmarks:

> ttRepAdmin -dsn masterds -bookmark
Replication hold LSN 10/927692
Last written LSN 10/928908
Last LSN forced to disk ... 10/280540
Each LSN is defined by two values:
Log file number / Offset in log file

Using ttRepAdmin to show replication status

12-10 Oracle TimesTen In-Memory Database Replication Guide

The LSNs output from ttRepAdmin -bookmark are:

Using ttBookMark to display bookmark location
Use the ttBookmark built-in procedure to display the location of bookmarks.

Example 12–9 Using ttBookmark to display bookmark location

> ttIsql masterds

Command> call ttBookMark();
< 10, 928908, 10, 280540, 10, 927692 >
1 row found.

The first two columns in the returned row define the "Last written LSN," the next two
columns define the "Last LSN forced to disk," and the last two columns define the
"Replication hold LSN."

Using ttRepAdmin to show replication status
You can use the ttRepAdmin utility with the -showstatus option to display the
current status of the replication agent. The status output includes the bookmark
locations, port numbers, and communication protocols used by the replication agent
for the queried database.

The output from ttRepAdmin -showstatus includes the status of the main thread
and the TRANSMITTER and RECEIVER threads used by the replication agent. A master
database has a TRANSMITTER thread and a subscriber database has a RECEIVER
thread. A database that serves a master/subscriber role in a bidirectional replication
scheme has both a TRANSMITTER and a RECEIVER thread.

Each replication agent has a single REPLISTENER thread that listens on a port for peer
connections. On a master database, the REPLISTENER thread starts a separate
TRANSMITTER thread for each subscriber database. On a subscriber database, the
REPLISTENER thread starts a separate RECEIVER thread for each connection from a
master.

If the TimesTen daemon requests that the replication agent stop or if a fatal error
occurs in any of the other threads used by the replication agent, the main thread waits
for the other threads to gracefully terminate. The TimesTen daemon may or may not
restart the replication agent, depending upon certain fatal errors. The REPLISTENER
thread never terminates during the lifetime of the replication agent. A TRANSMITTER
or RECEIVER thread may stop but the replication agent may restart it. The RECEIVER
thread terminates on errors from which it cannot recover or when the master
disconnects.

Line Description

Replication hold LSN The location of the lowest (or oldest) record held in the log for
possible transmission to a subscriber. A value of -1/-1 indicates
replication is in the stop state with respect to all subscribers (or
the queried database is not a master database).

Last written LSN The location of the most recently generated transaction log record
for the database.

Last LSN forced to
disk

The location of the most recent transaction log record written to
the disk.

Using ttRepAdmin to show replication status

Monitoring Replication 12-11

Example 12–9 shows ttRepAdmin -showstatus output for a unidirectional
replication scheme in which the rep1 database is the master and rep2 database is the
subscriber. The first ttRepAdmin -showstatus output shows the status of the rep1
database and its TRANSMITTER thread. The second output shows the status of the
rep2 database and its RECEIVER thread.

Following the example are sections that describe the meaning of each field in the
ttRepAdmin -showstatus output:

■ MAIN thread status fields

■ Replication peer status fields

■ TRANSMITTER thread status fields

■ RECEIVER thread status fields

Example 12–10 Unidirectional replication scheme

Consider the unidirectional replication scheme from the rep1 database to the rep2
database:

CREATE REPLICATION r
ELEMENT e1 TABLE t
 MASTER rep1
 SUBSCRIBER rep2;

The replication status for the rep1 database should look similar to the following:

> ttRepAdmin -showstatus rep1

DSN : rep1
Process ID : 1980
Replication Agent Policy : MANUAL
Host : MYHOST
RepListener Port : 1113 (AUTO)
Last write LSN : 0.1487928
Last LSN forced to disk : 0.1487928
Replication hold LSN : 0.1486640

Replication Peers:
 Name : rep2
 Host : MYHOST
 Port : 1154 (AUTO)
 Replication State : STARTED
 Communication Protocol : 12

TRANSMITTER thread(s):
 For : rep2
 Start/Restart count : 2
 Send LSN : 0.1485960
 Transactions sent : 3
 Total packets sent : 10
 Tick packets sent : 3
 MIN sent packet size : 48
 MAX sent packet size : 460
 AVG sent packet size : 167
 Last packet sent at : 17:41:05
 Total Packets received: 9
 MIN rcvd packet size : 48
 MAX rcvd packet size : 68
 AVG rcvd packet size : 59

Using ttRepAdmin to show replication status

12-12 Oracle TimesTen In-Memory Database Replication Guide

 Last packet rcvd'd at : 17:41:05
 Earlier errors (max 5):
 TT16060 in transmitter.c (line 3590) at 17:40:41 on 08-25-2004
 TT16122 in transmitter.c (line 2424) at 17:40:41 on 08-25-2004

Note that the Replication hold LSN, the Last write LSN and the Last LSN
forced to disk are very close, which indicates that replication is operating satisfactorily.
If the Replication hold LSN falls behind the Last write LSN and the Last
LSN, then replication is not keeping up with updates to the master.

The replication status for the rep2 database should look similar to the following:

> ttRepAdmin -showstatus rep2

DSN : rep2
Process ID : 2192
Replication Agent Policy : MANUAL
Host : MYHOST
RepListener Port : 1154 (AUTO)
Last write LSN : 0.416464
Last LSN forced to disk : 0.416464
Replication hold LSN : -1.-1

Replication Peers:
 Name : rep1
 Host : MYHOST
 Port : 0 (AUTO)
 Replication State : STARTED
 Communication Protocol : 12

RECEIVER thread(s):
 For : rep1
 Start/Restart count : 1
 Transactions received : 0
 Total packets sent : 20
 Tick packets sent : 0
 MIN sent packet size : 48
 MAX sent packet size : 68
 AVG sent packet size : 66
 Last packet sent at : 17:49:51
 Total Packets received: 20
 MIN rcvd packet size : 48
 MAX rcvd packet size : 125
 AVG rcvd packet size : 52
 Last packet rcvd'd at : 17:49:51

MAIN thread status fields
The following fields are output for the MAIN thread in the replication agent for the
queried database.

MAIN Thread Description

DSN Name of the database to be queried.

Process ID Process Id of the replication agent.

Replication Agent
Policy

The restart policy, as described in "Starting and stopping the
replication agents" on page 10-13

Host Name of the machine that hosts this database.

Using ttRepAdmin to show replication status

Monitoring Replication 12-13

Replication peer status fields
The following fields are output for each replication peer that participates in the
replication scheme with the queried database. A "peer" could play the role of master,
subscriber, propagator or both master and subscriber in a bidirectional replication
scheme.

TRANSMITTER thread status fields
The following fields are output for each TRANSMITTER thread used by a master
replication agent to send transaction updates to a subscriber. A master with multiple
subscribers has multiple TRANSMITTER threads.

RepListener Port TCP/IP port used by the replication agent to listen for connections
from the TRANSMITTER threads of remote replication agents. A
value of 0 indicates that this port has been assigned automatically
to the replication agent (the default), rather than being specified as
part of a replication scheme.

Last write LSN The location of the most recently generated transaction log record
for the database. See "Show replicated log records" on page 12-9
for more information.

Last LSN forced to
disk

The location of the most recent transaction log record written to
the disk. See "Show replicated log records" on page 12-9 for more
information.

Replication hold
LSN

The location of the lowest (or oldest) record held in the log for
possible transmission to a subscriber. A value of -1/-1 indicates
replication is in the stop state with respect to all subscribers. See
"Show replicated log records" on page 12-9 for more information.

Replication Peers Description

Name Name of a database that is a replication peer to this database.

Host Host of the peer database.

Port TCP/IP port used by the replication agent for the peer
database. A value of 0 indicates this port has been assigned
automatically to the replication agent (the default), rather than
being specified as part of a replication scheme.

Replication State Current replication state of the replication peer with respect to
the queried database (see "Show subscriber database
information" on page 12-4 for information).

Communication Protocol Internal protocol used by replication to communicate between
the peers. (For internal use only.)

Note: The counts in the TRANSMITTER output begin to accumulate
when the replication agent is started. These counters are reset to 0
only when the replication agent is started or restarted.

TRANSMITTER Thread Description

For Name of the subscriber database that is receiving replicated data
from this database.

MAIN Thread Description

Using ttRepAdmin to show replication status

12-14 Oracle TimesTen In-Memory Database Replication Guide

RECEIVER thread status fields
The following fields are output for each RECEIVER thread used by a subscriber
replication agent to receive transaction updates from a master. A subscriber that is
updated by multiple masters has multiple RECEIVER threads.

Start/Restart count Number of times this TRANSMITTER thread was started or
restarted by the replication agent due to a temporary error, such as
operation timeout, network failure, and so on.

Send LSN The last LSN transmitted to this peer. See "Show replicated log
records" on page 12-9 for more information.

Transactions sent Total number of transactions sent to the subscriber.

Total packets sent Total number of packets sent to the subscriber (including tick
packets)

Tick packets sent Total number of tick packets sent. Tick packets are used to
maintain a "heartbeat" between the master and subscriber. You can
use this value to determine how many of the 'Total packets sent'
packets are not related to replicated data.

MIN sent packet
size

Size of the smallest packet sent to the subscriber.

MAX sent packet
size

Size of the largest packet sent to the subscriber.

AVG sent packet
size

Average size of the packets sent to the subscriber.

Last packet sent at Time of day last packet was sent (24-hour clock time)

Total packets
received

Total packets received from the subscriber (tick packets and
acknowledgement data)

MIN rcvd packet
size

Size of the smallest packet received

MAX rcvd packet
size

Size of the largest packet received

AVG rcvd packet
size

Average size of the packets received

Last packet rcvd at Time of day last packet was received (24-hour clock time)

Earlier errors (max
5)

Last five errors generated by this thread

Note: The counts in the RECEIVER output begin to accumulate when
the replication agent is started. These counters are reset to 0 only
when the replication agent is started or restarted.

RECEIVER Thread Description

For Name of the master database that is sending replicated
data from this database

Start/Restart count Number of times this RECEIVER thread was started or
restarted by the replication agent due to a temporary
error, such as operation timeout, network failure, and so
on.

TRANSMITTER Thread Description

Checking the status of return service transactions

Monitoring Replication 12-15

Checking the status of return service transactions
You can determine whether the return service for a particular subscriber has been
disabled by the DISABLE RETURN failure policy by calling the
ttRepSyncSubscriberStatus built-in procedure or by means of the SNMP trap,
ttRepReturnTransitionTrap. The ttRepSyncSubscriberStatus procedure
returns a value of '1' to indicate the return service has been disabled for the subscriber,
or a value of '0' to indicate that the return service is still enabled.

Example 12–11 Using ttRepSyncSubscriberStatus to obtain return receipt status

To use ttRepSyncSubscriberStatus to obtain the return receipt status of the
subscriberds database with respect to its master database, masterDSN, enter:

> ttIsql masterDSN

Command> CALL ttRepSyncSubscriberStatus ('subscriberds');
< 0 >
1 row found.

This result indicates that the return service is still enabled.

See "DISABLE RETURN" on page 9-21 for more information.

You can check the status of the last return receipt or return twosafe transaction
executed on the connection handle by calling the ttRepXactTokenGet and
ttRepXactStatus procedures.

First, call ttRepXactTokenGet to get a unique token for the last return service
transaction. If you are using return receipt, the token identifies the last return receipt
transaction committed on the master database. If you are using return twosafe, the
token identifies the last twosafe transaction on the master that, in the event of a

Transactions received Total number of transactions received from the master

Total packets sent Total number of packets sent to the master (tick packets
and acknowledgement data)

Tick packets sent Total number of tick packets sent to the master. Tick
packets are used to maintain a "heartbeat" between the
master and subscriber. You can use this value to
determine how many of the 'Total packets sent' packets
are not related to acknowledgement data.

MIN sent packet size Size of the smallest packet sent to the master

MAX sent packet size Size of the largest packet sent to the master

AVG sent packet size Average size of the packets sent to the master

Last packet sent at Time of day last packet was sent to the master (24-hour
clock time)

Total packets received Total packets of acknowledgement data received from
the master

MIN rcvd packet size Size of the smallest packet received

MAX rcvd packet size Size of the largest packet received

AVG rcvd packet size Average size of the packets received

Last packet rcvd at Time of day last packet was received (24-hour clock
time)

RECEIVER Thread Description

Checking the status of return service transactions

12-16 Oracle TimesTen In-Memory Database Replication Guide

successful commit on the subscriber, is committed by the replication agent on the
master. However, in the event of a timeout or other error, the twosafe transaction
identified by the token is not committed by the replication agent on the master.

Next, pass the token returned by ttRepXactTokenGet to the ttRepXactStatus
procedure to obtain the return service status. The output of the ttRepXactStatus
procedure reports which subscriber or subscribers are configured to receive the
replicated data and the current status of the transaction (not sent, received, committed)
with respect to each subscriber. If the subscriber replication agent encountered a
problem applying the transaction to the subscriber database, the ttRepXactStatus
procedure also includes the error string. If you are using return twosafe and receive a
timeout or other error, you can then decide whether to unconditionally commit or
retry the commit, as described in "RETURN TWOSAFE" on page 9-15.

The ttRepXactStatus procedure returns the return service status for each
subscriber as a set of rows formatted as:

subscriberName, status, error

Example 12–12 Reporting the status of each subscriber

You can call the ttRepXactTokenGet and ttRepXactStatus built-in procedures
in a GetRSXactStatus function to report the status of each subscriber in your
replicated system:

SQLRETURN GetRSXactStatus (HDBC hdbc)
{
 SQLRETURN rc = SQL_SUCCESS;
 HSTMT hstmt = SQL_NULL_HSTMT;
 char xactId [4001] = "";
 char subscriber [62] = "";
 char state [3] = "";

 /* get the last RS xact id executed on this connection */
 SQLAllocStmt (hdbc, &hstmt);
 SQLExecDirect (hstmt, "CALL ttRepXactTokenGet ('R2')", SQL_NTS);

 /* bind the xact id result as a null terminated hex string */
 SQLBindCol (hstmt, 1, SQL_C_CHAR, (SQLPOINTER) xactId,
 sizeof (xactId), NULL);

 /* fetch the first and only row */
 rc = SQLFetch (hstmt);

 /* close the cursor */
 SQLFreeStmt (hstmt, SQL_CLOSE);

 if (rc != SQL_ERROR && rc != SQL_NO_DATA_FOUND)
 {
 /* display the xact id */
 printf ("\nRS Xact ID: 0x%s\n\n", xactId);

 /* get the status of this xact id for every subscriber */

Note: If ttRepXactStatus is called without a token from
ttRepXactTokenGet, it returns the status of the most recent
transaction on the connection which was committed with the return
receipt or return twosafe replication service.

Improving replication performance

Monitoring Replication 12-17

 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_VARBINARY, 0, 0,
 (SQLPOINTER) xactId, strlen (xactId), NULL);

 /* execute */
 SQLExecDirect (hstmt, "CALL ttRepXactStatus (?)", SQL_NTS);

 /* bind the result columns */
 SQLBindCol (hstmt, 1, SQL_C_CHAR, (SQLPOINTER) subscriber,
 sizeof (subscriber), NULL);

 SQLBindCol (hstmt, 2, SQL_C_CHAR, (SQLPOINTER) state,
 sizeof (state), NULL);

 /* fetch the first row */
 rc = SQLFetch (hstmt);

 while (rc != SQL_ERROR && rc != SQL_NO_DATA_FOUND)
 {
 /* report the status of this subscriber */
 printf ("\n\nSubscriber: %s", subscriber);
 printf ("\nState: %s", state);

 /* are there more rows to fetch? */
 rc = SQLFetch (hstmt);
 }
 }

 /* close the statement */
 SQLFreeStmt (hstmt, SQL_DROP);

 return rc;
}

Improving replication performance
To increase replication performance, consider these tips:

■ Configure parallel replication. See "Configuring parallel replication" on page 10-7.

■ Use asynchronous replication, which is the default. For more information, see
"Making decisions about performance and recovery tradeoffs" on page 9-3.
However, if you are using active standby pairs, return twosafe (synchronous
replication) has better performance than return receipt (semi-synchronous
replication).

■ Set the LogFileSize and LogBufMB first connection attributes to their
maximum values. For more information, see "Setting connection attributes for
logging" on page 10-10.

■ If the workload is heavy enough that replication sometimes falls behind,
replicated changes must be captured from the transaction logs on disk rather than
from the in-memory log buffer. Using the fastest possible storage for the TimesTen
transaction logs reduces I/O contention between transaction log flushing and
replication capture and helps replication to catch up more quickly during periods
of reduced workload. Consider using a high performance, cached disk array using
a RAID-0 stripe across multiple fast disks or solid state storage.

■ Experiment with the number of connections to the database where the updates are
applied. If you need more than 64 concurrent connections, set the Connections

Improving replication performance

12-18 Oracle TimesTen In-Memory Database Replication Guide

first connection attribute to a higher value. See "Connections" in Oracle TimesTen
In-Memory Database Reference.

See also "Poor replication or XLA performance" in Oracle TimesTen In-Memory Database
Troubleshooting Guide.

13

Altering Replication 13-1

13Altering Replication

This chapter describes how to alter an existing replication system. Table 13–1 lists the
tasks often performed on an existing replicated system.

Altering a replication scheme
You can perform the following tasks without stopping the replication agent:

■ Create, alter or drop a user. These statements are replicated.

■ Grant or revoke privileges from a user. These statements are replicated.

■ Add a subscriber to the replication scheme. See "Creating and adding a subscriber
database" on page 13-5.

■ Add a PL/SQL object to the master database and implement its replication on
subscribers. See "Adding a PL/SQL object to an existing replication scheme" on
page 13-3.

Use ALTER REPLICATION to alter the replication scheme on the master and
subscriber databases. Any alterations on the master database must also be made on its
subscribers.

Table 13–1 Tasks performed on an existing replicated system

Task What to do

Alter or drop a replication scheme See"Altering a replication scheme" on page 13-1 and
"Dropping a replication scheme" on page 13-8.

Alter a table used in a replication
scheme

See "Altering a replicated table" on page 13-8.

Truncate a table used in a replication
scheme

See "Truncating a replicated table" on page 13-8.

Change the replication state of a
subscriber database

See "Setting the replication state of subscribers" on
page 10-15.

Resolve update conflicts See Chapter 14, "Resolving Replication Conflicts".

Recover from failures See Chapter 11, "Managing Database Failover and
Recovery".

Upgrade database Use the ttMigrate and ttRepAdmin utilities, as
described in "Database Upgrades" in Oracle TimesTen
In-Memory Database Installation Guide.

Altering a replication scheme

13-2 Oracle TimesTen In-Memory Database Replication Guide

Most ALTER REPLICATION operations are supported only when the replication agent
is stopped (ttAdmin -repStop). The procedure for ALTER REPLICATION
operations that require the replication agents to be stopped is:

1. Use the ttRepStop procedure or ttAdmin -repStop to stop the replication
agent for the master and subscriber databases. While the replication agents are
stopped, changes to the master database are stored in the log.

2. Issue the same ALTER REPLICATION statement on both master and subscriber
databases.

3. Use the ttRepStart procedure or ttAdmin -repStart to restart the replication
agent for the master and subscriber databases. The changes stored in the master
database log are sent to the subscriber database.

If you use ALTER REPLICATION to change a replication scheme that specifies a
DATASTORE element, then:

■ You cannot use SET NAME to change the name of the DATASTORE element

■ You cannot use SET CHECK CONFLICTS to enable conflict resolution

This section includes the following topics:

■ Adding a table or sequence to an existing replication scheme

■ Adding a PL/SQL object to an existing replication scheme

■ Adding a DATASTORE element to an existing replication scheme

■ Dropping a table or sequence from a replication scheme

■ Creating and adding a subscriber database

■ Dropping a subscriber database

■ Changing a TABLE or SEQUENCE element name

■ Replacing a master database

■ Eliminating conflict detection

■ Eliminating the return receipt service

■ Changing the port number

■ Changing the replication route

■ Changing the log failure threshold

Adding a table or sequence to an existing replication scheme
There are two ways to add a table or sequence to an existing replication scheme:

■ When the element level of the replication scheme is TABLE or SEQUENCE, use the
ALTER REPLICATION statement with the ADD ELEMENT clause to add a table or
sequence. See Example 13–1.

■ When the element level of the replication scheme is DATASTORE, use the ALTER
REPLICATION statement with the ALTER ELEMENT clause to include a table or
sequence. See Example 13–2.

Note: You must have the ADMIN privilege to use the ALTER
REPLICATION statement.

Altering a replication scheme

Altering Replication 13-3

Example 13–1 Adding a sequence and a table to a replication scheme

This example uses the replication scheme r1, which was defined in Example 9–29. It
alters replication scheme r1 to add sequence seq and table westleads, which will be
updated on database westds and replicated to database eastds.

ALTER REPLICATION r1
 ADD ELEMENT elem_seq SEQUENCE seq
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
 ADD ELEMENT elem_westleads TABLE westleads
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast";

Example 13–2 Adding a sequence and a table to a DATASTORE element

Add the sequence my.seq and the table my.tab1 to the ds1 DATASTORE element in
my.rep1 replication scheme.

ALTER REPLICATION my.rep1
 ALTER ELEMENT ds1 DATASTORE
 INCLUDE SEQUENCE my.seq
 ALTER ELEMENT ds1 DATASTORE
 INCLUDE TABLE my.tab1;

Adding a PL/SQL object to an existing replication scheme
To add a new PL/SQL procedure, package, package body or function to an existing
replication scheme, complete these tasks:

1. Create the PL/SQL object on a master database. The CREATE statement is not
replicated to subscribers.

2. Create the PL/SQL object on the subscribers

3. Grant privileges to the new PL/SQL object on the master database. The GRANT
statement is replicated to the subscribers.

Adding a DATASTORE element to an existing replication scheme
You can add a DATASTORE element to an existing replication scheme by using the
ALTER REPLICATION statement with the ADD ELEMENT clause. All tables except
temporary tables, materialized views, and nonmaterialized views are included in the
replication scheme if you do not use the INCLUDE or EXCLUDE clauses. See "Including
tables or sequences when you add a DATASTORE element" on page 13-3 and
"Excluding a table or sequence when you add a DATASTORE element" on page 13-4.

Example 13–3 Adding a DATASTORE element to a replication scheme

Add a DATASTORE element to an existing replication scheme.

ALTER REPLICATION my.rep1
 ADD ELEMENT ds1 DATASTORE
 MASTER rep2
 SUBSCRIBER rep1, rep3;

Including tables or sequences when you add a DATASTORE element
You can restrict replication to specific tables or sequences when you add a database to
an existing replication scheme. Use the ALTER REPLICATION statement with the ADD
ELEMENT clause and the INCLUDE TABLE clause or INCLUDE SEQUENCE clause. You

Altering a replication scheme

13-4 Oracle TimesTen In-Memory Database Replication Guide

can have one INCLUDE clause for each table or sequence in the same ALTER
REPLICATION statement.

Example 13–4 Including a table and sequence in a DATASTORE element

Add the ds1 DATASTORE element to my.rep1 replication scheme. Include the table
my.tab2 and the sequence my.seq in the DATASTORE element.

ALTER REPLICATION my.rep1
ADD ELEMENT ds1 DATASTORE
MASTER rep2
SUBSCRIBER rep1, rep3
INCLUDE TABLE my.tab2
INCLUDE SEQUENCE my.seq;

Excluding a table or sequence when you add a DATASTORE element
You can exclude tables or sequences when you add a DATASTORE element to an
existing replication scheme. Use the ALTER REPLICATION statement with the ADD
ELEMENT clause and the EXCLUDE TABLE clause or EXCLUDE SEQUENCE clause. You
can have one EXCLUDE clause for each table or sequence in the same ALTER
REPLICATION statement.

Example 13–5 Excluding a table or sequence from a DATASTORE element

Add the ds2 DATASTORE element to a replication scheme, but exclude the table
my.tab1 and the sequence my.seq.

ALTER REPLICATION my.rep1
ADD ELEMENT ds2 DATASTORE
MASTER rep2
SUBSCRIBER rep1
EXCLUDE TABLE my.tab1
EXCLUDE SEQUENCE my.seq;

Dropping a table or sequence from a replication scheme
This section includes the following topics:

■ Dropping a table or sequence that is replicated as part of a DATASTORE element

■ Dropping a table or sequence that is replicated as a TABLE or SEQUENCE
element

Dropping a table or sequence that is replicated as part of a DATASTORE element
To drop a table or sequence that is part of a replication scheme at the DATASTORE
level, complete the following tasks:

1. Stop the replication agent.

2. Exclude the table or sequence from the DATASTORE element in the replication
scheme.

3. Drop the table or sequence.

If you have more than one DATASTORE element that contains the table or sequence,
then you must exclude the table or sequence from each element before you drop it.

Altering a replication scheme

Altering Replication 13-5

Example 13–6 Excluding a table from a DATASTORE element and then dropping the
table

Exclude the table my.tab1 from the ds1 DATASTORE element in the my.rep1
replication scheme. Then drop the table.

ALTER REPLICATION my.rep1
 ALTER ELEMENT ds1 DATASTORE
 EXCLUDE TABLE my.tab1;
DROP TABLE my.tab1;

Dropping a table or sequence that is replicated as a TABLE or SEQUENCE element
To drop a table that is part of a replication scheme at the TABLE or SEQUENCE level,
complete the following tasks:

1. Stop the replication agent.

2. Drop the element from the replication scheme.

3. Drop the table or sequence.

Example 13–7 Dropping an element from a replication scheme and then dropping the
sequence

Drop the SEQUENCE element elem_seq from the replication scheme r1. Then drop
the sequence seq.

ALTER REPLICATION r1
 DROP ELEMENT elem_seq;
DROP SEQUENCE seq;

Creating and adding a subscriber database
You can add a new subscriber database while the replication agents are running. To
add a database to a replication scheme, do the following:

1. Make sure the new subscriber database does not exist.

2. Apply the appropriate statements to all participating databases:

ALTER REPLICATION ...
 ALTER ELEMENT ...
 ADD SUBSCRIBER ...

3. On the source database (the master), create a user and grant the ADMIN privilege
to the user:

CREATE USER ttuser IDENTIFIED BY ttuser;
User created.

GRANT admin TO ttuser;

4. Logged in as the instance administrator, run the ttRepAdmin -duplicate
command to copy the contents of the master database to the newly created
subscriber. You can use the -setMasterRepStart option to ensure that any
updates made to the master after the duplicate operation has started are also
copied to the subscriber.

5. Start the replication agent on the newly created database (ttAdmin -repStart).

Altering a replication scheme

13-6 Oracle TimesTen In-Memory Database Replication Guide

Example 13–8 Adding a subscriber to a replicated table

This example alters the r1 replication scheme to add a subscriber (backup3) to the
westleads table (step 2 above):

ALTER REPLICATION r1
 ALTER ELEMENT elem_westleads
 ADD SUBSCRIBER backup3 ON "backupserver";

Dropping a subscriber database
Stop the replication agent before you drop a subscriber database.

This example alters the r1 replication scheme to drop the backup3 subscriber for the
westleads table:

Example 13–9 Dropping a subscriber for a replicated table

ALTER REPLICATION r1
 ALTER ELEMENT elem_westleads
 DROP SUBSCRIBER backup3 ON "backupserver";

Changing a TABLE or SEQUENCE element name
Stop the replication agent before you change a TABLE or SEQUENCE element name.

Change the element name of the westleads table from elem_westleads to
newelname:

Example 13–10 Changing a table name

ALTER REPLICATION r1
 ALTER ELEMENT Eelem_westleads
 SET NAME newelname;

Replacing a master database
Stop the replication agent before you replace a master database.

In this example, newwestds is made the new master for all elements currently
configured for the master, westds:

Example 13–11 Replacing a master database

ALTER REPLICATION r1
 ALTER ELEMENT * IN westds
 SET MASTER newwestds;

Eliminating conflict detection
In this example, conflict detection configured by the CHECK CONFLICTS clause in the
scheme shown in Example 14–2 is eliminated for the elem_accounts_1 table:

Example 13–12 Eliminating conflict detection for a table

ALTER REPLICATION r1
 ALTER ELEMENT elem_accounts_1

Note: You cannot use the SET NAME clause to change the name of a
DATASTORE element.

Altering a replication scheme

Altering Replication 13-7

 SET NO CHECK;

See Chapter 14, "Resolving Replication Conflicts" for a detailed discussion on conflict
checking.

Eliminating the return receipt service
In this example, the return receipt service is eliminated for the first subscriber in the
scheme shown in Example 9–29:

Example 13–13 Eliminating return receipt service for a subscriber

ALTER REPLICATION r1
 ALTER ELEMENT elem_waccounts
 ALTER SUBSCRIBER eastds ON "eastcoast"
 SET NO RETURN;

Changing the port number
The port number is the TCP/IP port number on which the replication agent of a
subscriber database accepts connection requests from the master replication agent. See
"Port assignments" on page 9-24 for details on how to assign port to the replication
agents.

In this example, the r1 replication scheme is altered to change the port number of the
eastds to 22251:

Example 13–14 Changing a port number for a database

ALTER REPLICATION r1
 ALTER STORE eastds ON "eastcoast"
 SET PORT 22251;

Changing the replication route
If a replication host has multiple network interfaces, you may specify which interfaces
are used for replication traffic using the ROUTE clause. If you need to change which
interfaces are used by replication, you may do so by dropping and adding IP
addresses from or to a ROUTE clause.

Example 13–15 Changing the replication route

In this example, the rep.r1 replication scheme is altered to change the priority 2 IP
address for the master database from 192.168.1.100 to 192.168.1.101:

ALTER REPLICATION r1
 DROP ROUTE MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"
 MASTERIP "192.168.1.100"
 ADD ROUTE MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"
 MASTERIP "192.168.1.101" PRIORITY 2;

Changing the log failure threshold
Use the FAILTHRESHOLD attribute of the STORE parameter to reset the log failure
threshold. Stop the replication agents before using ALTER REPLICATION or ALTER
ACTIVE STANDBY PAIR to define a new threshold value, and then restart the
replication agents.

Altering a replicated table

13-8 Oracle TimesTen In-Memory Database Replication Guide

See "Setting the log failure threshold" on page 3-11 and "Setting the log failure
threshold" on page 9-24 for more information about the log failure threshold.

Altering a replicated table
You can use ALTER TABLE to add or drop columns on the master database. The
ALTER TABLE operation is replicated to alter the subscriber databases.

If you use ALTER TABLE on a database configured for bidirectional replication, first
stop updates to the table on all of the replicated databases and confirm all replicated
updates to the table have been received by the databases before issuing the ALTER
TABLE statement. Do not resume updates until the ALTER TABLE operation has been
replicated to all databases. This is necessary to ensure that there are no write
operations until after the table is altered on all databases.

Also, if you are executing a number of successive ALTER TABLE operations on a
database, you should only proceed with the next ALTER TABLE after you have
confirmed the previous ALTER TABLE has reached all of the subscribers.

Truncating a replicated table
You can use TRUNCATE TABLE to delete all of the rows of a table without dropping
the table itself. Truncating a table is faster than using a DELETE FROM table statement.

Truncate operations on replicated tables are replicated and result in truncating the
table on the subscriber database. Unlike delete operations, however, the individual
rows are not deleted. Even if the contents of the tables do not match at the time of the
truncate operation, the rows on the subscriber database are deleted anyway.

The TRUNCATE statement replicates to the subscriber, even when no rows are operated
upon.

When tables are being replicated with timestamp conflict checking enabled, conflicts
are not reported.

Dropping a replication scheme
You can use the DROP REPLICATION statement to remove a replication scheme from
a database. You cannot drop a replication scheme when master catchup is required
unless it is the only replication scheme in the database.

Note: You can use the ttRepSubscriberWait procedure or
monitoring tools described in Chapter 12, "Monitoring Replication" to
confirm the updates have been received and committed on the
databases.

Note: You can use the ALTER TABLE statement to change default
column values, but the ALTER TABLE statement is not replicated.
Thus default column values need not be identical on all nodes.

Note: You must have the ADMIN privilege to use the DROP
REPLICATION statement.

Dropping a replication scheme

Altering Replication 13-9

You must stop the replication agent before you drop a replication scheme.

Example 13–16 Dropping a replication scheme

To remove the repscheme replication scheme from a database, enter the following:

DROP REPLICATION repscheme;

If you are dropping replicated tables, you must drop the replication scheme before
dropping the replicated tables. Otherwise, you receive an error indicating that you
have attempted to drop a replicated table or index.

Example 13–17 Removing a table and a replication from a database

To remove the tab table and repscheme replication scheme from a database, enter
the following:

DROP REPLICATION repscheme;
DROP TABLE tab;

Dropping a replication scheme

13-10 Oracle TimesTen In-Memory Database Replication Guide

14

Resolving Replication Conflicts 14-1

14Resolving Replication Conflicts

This chapter includes these topics:

■ How replication conflicts occur

■ Using a timestamp to resolve conflicts

■ Configuring timestamp comparison

■ Reporting conflicts

■ The conflict report XML Document Type Definition

How replication conflicts occur
Tables in databases configured in a bidirectional replication scheme may be subject to
replication conflicts. A replication conflict occurs when applications on bidirectionally
replicated databases initiate an update, insert or delete operation on the same data
item at the same time. If no special steps are taken, each database can end up in
disagreement with the last update made by the other database.

These types of replication conflicts can occur:

■ Update conflicts: This type of conflict occurs when concurrently running
transactions at different databases make simultaneous update requests on the
same row in the same table, and install different values for one or more columns.

■ Uniqueness conflicts: This type of conflict occurs when concurrently running
transactions at different databases make simultaneous insert requests for a row in
the same table that has the same primary or unique key, but different values for
one or more other columns.

■ Delete conflicts: This type of conflict occurs when a transaction at one database
deletes a row while a concurrent transaction at another database simultaneously
updates or inserts the same row. Currently, TimesTen can detect delete/update
conflicts, but cannot detect delete/insert conflicts. TimesTen cannot resolve either
type of delete conflict.

See "Reporting conflicts" on page 14-7 for example reports generated by TimesTen
upon detecting update, uniqueness, and delete conflicts.

Note: TimesTen does not detect conflicts involving TRUNCATE
TABLE statements.

How replication conflicts occur

14-2 Oracle TimesTen In-Memory Database Replication Guide

Update and insert conflicts
Figure 14–1 shows the results from an update conflict, which would occur for the
value of X under the following circumstances:

Figure 14–1 Update conflict

If update or insert conflicts remain unchecked, the master and subscriber databases
fall out of synchronization with each other. It may be difficult or even impossible to
determine which database is correct.

With update conflicts, it is possible for a transaction to update many data items but
have a conflict on a few of them. Most of the transaction's effects survive the conflict,
with only a few being overwritten by replication. If you decide to ignore such
conflicts, the transactional consistency of the application data is compromised.

If an update conflict occurs, and if the updated columns for each version of the row are
different, then the non-primary key fields for the row may diverge between the
replicated tables.

Steps On Database A On Database B

Initial condition X is 1. X is 1.

The application on each database
updates X simultaneously.

Set X=2. Set X=100.

The replication agent on each database
sends its update to the other database.

Replicate X to database
B.

Replicate X to database A.

Each database now has the other's
update.

Replication says to set
X=100.

Replication says to set
X=2.

Note: Uniqueness conflicts resulting from conflicting inserts follow a
similar pattern as update conflicts, but the conflict involves the whole
row.

Note: Within a single database, update conflicts are prevented by the
locking protocol: only one transaction at a time can update a specific
row in the database. However, update conflicts can occur in replicated
systems due to the ability of each database to operate independently.

Database A

Application

Database B

Application

X = 100 X = 2

X = 100 X = 2

How replication conflicts occur

Resolving Replication Conflicts 14-3

TimesTen replication uses timestamp-based conflict resolution to cope with
simultaneous updates or inserts. Through the use of timestamp-based conflict
resolution, you may be able to keep the replicated databases synchronized and
transactionally consistent.

Delete/update conflicts
Figure 14–2 shows the results from a delete/update conflict, which would occur for
Row 4 under the following circumstances:

Figure 14–2 Delete/update conflict

Although TimesTen can detect and report delete/update conflicts, it cannot resolve
them. Under these circumstances, the master and subscriber databases fall out of
synchronization with each other.

Although TimesTen cannot ensure synchronization between databases following such
a conflict, it does ensure that the most recent transaction is applied to each database. If
the timestamp for the delete is more recent than that for the update, the row is deleted
on each database. If the timestamp for the update is more recent than that for the
delete, the row is updated on the local database. However, because the row was
deleted on the other database, the replicated update is discarded. See "Reporting
delete/update conflicts" on page 14-11 for example reports.

Steps On database A On database B

Initial condition Row 4 exists Row 4 exists

The applications issue a conflicting update and
delete on Row 4 simultaneously

Update Row 4 Delete Row 4

The replication agent on each database sends the
delete or update to the other

Replicate update to
database B

Replicate delete to
database A

Each database now has the delete or update from
the other database

Replication says to
delete Row 4

Replication says to
update Row 4

Note: There is an exception to this behavior when timestamp
comparison is enabled on a table using UPDATE BY USER. See
"Enabling user timestamp column maintenance" on page 14-7 for
details.

Database A

Application

Database B

Application

Delete Row Update Row

Delete Row 4Update Row 4

Using a timestamp to resolve conflicts

14-4 Oracle TimesTen In-Memory Database Replication Guide

Using a timestamp to resolve conflicts
For replicated tables that are subject to conflicts, create the table with a special column
of type BINARY(8) to hold a timestamp value that indicates the time the row was
inserted or last updated. You can then configure TimesTen to automatically insert a
timestamp value into this column each time a particular row is changed, as described
in "Configuring timestamp comparison" on page 14-5.

How replication computes the timestamp column depends on your system:

■ On UNIX systems, the timestamp value is derived from the timeval structure
returned by the gettimeofday system call. This structure reports the time of day
in a pair of 4-byte words to a resolution of 1 microsecond. The actual resolution of
the value is system-dependent.

■ On Windows systems, the timestamp value is derived from the
GetSystemTimeAsFileTime Win32 call. The Windows file time is reported in
units of 0.1 microseconds, but effective granularity can be as coarse as 10
milliseconds.

TimesTen uses the time value returned by the system at the time the transaction
performs each update as the record's insert or update time. Therefore, rows that are
inserted or updated by a single transaction may receive different timestamp values.

When applying an update received from a master, the replication agent at the
subscriber database performs timestamp resolution in the following manner:

■ If the timestamp of the update record is newer than the timestamp of the stored
record, TimesTen updates the row. The same rule applies to inserts. If a replicated
insert is newer than an existing row, the existing row is overwritten.

■ If the timestamp of the update and of the stored record are equal, the update is
allowed. The same rule applies to inserts.

■ If the timestamp of the update is older than the timestamp of the stored record, the
update is discarded. The same rule applies to inserts.

■ If a row is deleted, no timestamp is available for comparison. Any update
operations on the deleted row are discarded. However, if a row is deleted on one
system, then replicated to another system that has more recently updated the row,
then the replicated delete is rejected. A replicated insert operation on a deleted
row is applied as an insert.

■ An update that cannot find the updated row is considered a delete conflict, which
is reported but cannot be resolved.

Note: TimesTen does not support conflict resolution between cached
tables in a cache group and an Oracle database.

Note: If the ON EXCEPTION NO ACTION clause is specified for a
table, then the update, insert, or delete that fails a timestamp
comparison is rejected. This may result in transactional inconsistencies
if replication applies some, but not all, the actions of a transaction. If
the ON EXCEPTION ROLLBACK WORK clause is specified for a table,
an update that fails timestamp comparison causes the entire
transaction to be skipped.

Configuring timestamp comparison

Resolving Replication Conflicts 14-5

Timestamp comparisons for local updates
To maintain synchronization of tables between replicated sites, TimesTen also
performs timestamp comparisons for updates performed by local transactions. If an
updated table is declared to have automatic timestamp maintenance, then updates to
records that have timestamps exceeding the current system time are prohibited.

Normally, clocks on replicated systems are synchronized sufficiently to ensure that a
locally updated record is given a later timestamp than that in the same record stored
on the other systems. Perfect synchronization may not be possible or affordable, but
by protecting record timestamps from "going backwards," replication can help to
ensure that the tables on replicated systems stay synchronized.

Configuring timestamp comparison
To configure timestamp comparison:

■ Include a column in your replicated tables to hold the timestamp value. See
"Including a timestamp column in replicated tables" on page 14-5.

■ Include a CHECK CONFLICTS clause for each TABLE element in the CREATE
REPLICATION statement to identify the timestamp column, how timestamps are
to be generated, what to do in the event of a conflict, and how to report conflicts.
See "Configuring the CHECK CONFLICTS clause" on page 14-5.

Including a timestamp column in replicated tables
To use timestamp comparison on replicated tables, you must specify a nullable
column of type BINARY(8) to hold the timestamp value. The timestamp column must
be created along with the table as part of a CREATE TABLE statement. It cannot be
added later as part of an ALTER TABLE statement. In addition, the timestamp column
cannot be part of a primary key or index. Example 14–1 shows that the rep.tab table
contains a column named tstamp of type BINARY(8) to hold the timestamp value.

Example 14–1 Including a timestamp column when creating a table

CREATE TABLE rep.tab (col1 NUMBER NOT NULL,
 col2 NUMBER NOT NULL,
 tstamp BINARY(8),
 PRIMARY KEY (col1));

If no timestamp column is defined in the replicated table, timestamp comparison
cannot be performed to detect conflicts. Instead, at each site, the value of a row in the
database reflects the most recent update applied to the row, either by local
applications or by replication.

Configuring the CHECK CONFLICTS clause
When configuring your replication scheme, you can set up timestamp comparison for
a TABLE element by including a CHECK CONFLICTS clause in the table's element
description in the CREATE REPLICATION statement.

Note: A CHECK CONFLICT clause cannot be specified for
DATASTORE elements.

Configuring timestamp comparison

14-6 Oracle TimesTen In-Memory Database Replication Guide

The syntax of the CREATE REPLICATION statement is described in Oracle TimesTen
In-Memory Database SQL Reference. Example 14–2 shows how CHECK CONFLICTS
might be used when configuring your replication scheme.

Example 14–2 Automatic timestamp comparison

In this example, we establish automatic timestamp comparison for the bidirectional
replication scheme defined in Example 9–29. The DSNs, west_dsn and east_dsn,
define the westds and eastds databases that replicate the repl.accounts table
containing the tstamp timestamp table. In the event of a comparison failure, discard
the transaction that includes an update with the older timestamp.

CREATE REPLICATION r1
ELEMENT elem_accounts_1 TABLE accounts
 CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN tstamp
 UPDATE BY SYSTEM
 ON EXCEPTION ROLLBACK WORK
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
ELEMENT elem_accounts_2 TABLE accounts
 CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN tstamp
 UPDATE BY SYSTEM
 ON EXCEPTION ROLLBACK WORK
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast";

When bidirectionally replicating databases with conflict resolution, the replicated
tables on each database must be set with the same CHECK CONFLICTS attributes. If
you need to disable or change the CHECK CONFLICTS settings for the replicated
tables, use the ALTER REPLICATION statement described in "Eliminating conflict
detection" on page 13-6 and apply to each replicated database.

Enabling system timestamp column maintenance
Enable system timestamp comparison by using:

CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN ColumnName
 UPDATE BY SYSTEM

TimesTen automatically maintains the value of the timestamp column using the
current time returned by the underlying operating system. This is the default setting.

When you specify UPDATE BY SYSTEM, TimesTen:

■ Initializes the timestamp column to the current time when a new record is inserted
into the table.

■ Updates the timestamp column to the current time when an existing record is
modified.

During initial load, the timestamp column values should be left NULL, and
applications should not give a value for the timestamp column when inserting or
updating a row.

When you use the ttBulkCp or ttMigrate utility to save TimesTen tables, the saved
rows maintain their current timestamp values. When the table is subsequently copied
or migrated back into TimesTen, the timestamp column retains the values it had when
the copy or migration file was created.

Reporting conflicts

Resolving Replication Conflicts 14-7

Enabling user timestamp column maintenance
Enable user timestamp column maintenance on a table by using:

CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN ColumnName
 UPDATE BY USER

When you configure UPDATE BY USER, your application is responsible for
maintaining timestamp values. The timestamp values used by your application can be
arbitrary, but the time values cannot decrease. In cases where the user explicitly sets or
updates the timestamp column, the application-provided value is used instead of the
current time.

Replicated delete operations always carry a system-generated timestamp. If replication
has been configured with UPDATE BY USER and an update/delete conflict occurs, the
conflict is resolved by comparing the two timestamp values and the operation with the
larger timestamp wins. If the basis for the user timestamp varies from that of the
system-generated timestamp, the results may not be as expected. Therefore, if you
expect delete conflicts to occur, use system-generated timestamps.

Reporting conflicts
TimesTen conflict checking may be configured to report conflicts to a human-readable
plain text file, or to an XML file for use by user applications. This section includes the
topics:

■ Reporting conflicts to a text file

■ Reporting conflicts to an XML file

■ Reporting uniqueness conflicts

■ Reporting update conflicts

■ Reporting delete/update conflicts

■ Suspending and resuming the reporting of conflicts

Reporting conflicts to a text file
To configure replication to report conflicts to a human-readable text file (the default),
use:

CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN ColumnName
 ...
 REPORT TO 'FileName' FORMAT STANDARD

An entry is added to the report file FileName that describes each conflict. The phrase
FORMAT STANDARD is optional and may be omitted, as the standard report format is
the default.

Note: If you configure TimesTen for timestamp comparison after
using the ttBulkCp or ttMigrate to copy or migrate your tables,
the initial values of the timestamp columns remain NULL, which is
considered by replication to be the earliest possible time.

Reporting conflicts

14-8 Oracle TimesTen In-Memory Database Replication Guide

Each failed operation logged in the report consists of an entry that starts with a header,
followed by information specific to the conflicting operation. Each entry is separated
by a number of blank lines in the report.

The header contains:

■ The time the conflict was discovered.

■ The databases that sent and received the conflicting update.

■ The table in which the conflict occurred.

The header has the following format:

Conflict detected at time on date
Datastore : subscriber_database
Transmitting name : master_database
Table : username.tablename

For example:

Conflict detected at 20:08:37 on 05-17-2004
Datastore : /tmp/subscriberds
Transmitting name : MASTERDS
Table : USER1.T1

Following the header is the information specific to the conflict. Data values are shown
in ASCII format. Binary data is translated into hexadecimal before display, and
floating-point values are shown with appropriate precision and scale.

For further description of the conflict report file, see "Reporting uniqueness conflicts"
on page 14-9, "Reporting update conflicts" on page 14-10 and "Reporting
delete/update conflicts" on page 14-11.

Reporting conflicts to an XML file
To configure replication to report conflicts to an XML file, use:

CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN ColumnName
 ...
 REPORT TO 'FileName' FORMAT XML

Replication uses the base file name FileName to create two files. FileName.xml is a
header file that contains the XML Document Type Definition for the conflict report
structure, as well as the root element, defined as <ttrepconflictreport>. Inside
the root element is an XML directive to include the file FileName.include, and it is
to this file that all conflicts are written. Each conflict is written as a single element of
type <conflict>.

For further description of the conflict report file XML elements, see "The conflict report
XML Document Type Definition" on page 14-13.

Note: When performing log maintenance on an XML conflict report
file, only the file FileName.include should be truncated or moved.
For conflict reporting to continue to function correctly, the file
FileName.xml should be left untouched.

Reporting conflicts

Resolving Replication Conflicts 14-9

Reporting uniqueness conflicts
A uniqueness conflict record is issued when a replicated insert fails because of a
conflict.

A uniqueness conflict record in the report file contains:

■ The timestamp and values for the existing tuple, which is the tuple that the
conflicting tuple is in conflict with.

■ The timestamp and values for the conflicting insert tuple, which is the tuple of the
insert that failed.

■ The key column values used to identify the record.

■ The action that was taken when the conflict was detected (discard the single row
insert or the entire transaction)

The format of a uniqueness conflict record is:

Conflicting insert tuple timestamp : <timestamp in binary format>
Existing tuple timestamp : <timestamp in binary format>
The existing tuple :
<<column value> [,<column value>. ..]>
The conflicting tuple :
<<column value> [,<column value> ...]>
The key columns for the tuple:
<<key column name> : <key column value>>
Transaction containing this insert skipped
Failed transaction:
Insert into table <user>.<table> <<columnvalue> [,<columnvalue>...]>
End of failed transaction

Example 14–3 shows the output from a uniqueness conflict on the row identified by
the primary key value, '2'. The older insert replicated from subscriberds conflicts
with the newer insert in masterds, so the replicated insert is discarded.

Example 14–3 Output from uniqueness conflict

Conflict detected at 13:36:00 on 03-25-2002
Datastore : /tmp/masterds
Transmitting name : SUBSCRIBERDS
Table : TAB
Conflicting insert tuple timestamp : 3C9F983D00031128
Existing tuple timestamp : 3C9F983E000251C0
The existing tuple :
< 2, 2, 3C9F983E000251C0>
The conflicting tuple :
< 2, 100, 3C9F983D00031128>
The key columns for the tuple:
<COL1 : 2>
Transaction containing this insert skipped
Failed transaction:
Insert into table TAB < 2, 100, 3C9F983D00031128>
End of failed transaction

Note: If the transaction was discarded, the contents of the entire
transaction are logged in the report file.

Reporting conflicts

14-10 Oracle TimesTen In-Memory Database Replication Guide

Reporting update conflicts
An update conflict record is issued when a replicated update fails because of a conflict.
This record reports:

■ The timestamp and values for the existing tuple, which is the tuple that the
conflicting tuple is in conflict with.

■ The timestamp and values for the conflicting update tuple, which is the tuple of
the update that failed.

■ The old values, which are the original values of the conflicting tuple before the
failed update.

■ The key column values used to identify the record.

■ The action that was taken when the conflict was detected (discard the single row
update or the entire transaction).

The format of an update conflict record is:

Conflicting update tuple timestamp : <timestamp in binary format>
Existing tuple timestamp : <timestamp in binary format>
The existing tuple :
<<column value> [,<column value>. ..]>
The conflicting update tuple :
TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
The old values in the conflicting update:
TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
The key columns for the tuple:
<<key column name> : <key column value>>
Transaction containing this update skipped
Failed transaction:
Update table <user>.<table> with keys:
<<key column name> : <key column value>>
New tuple value:
<TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
End of failed transaction

Example 14–4 shows the output from an update conflict on the col2 value in the row
identified by the primary key value, '6'. The older update replicated from the
masterds database conflicts with the newer update in subscriberds, so the
replicated update is discarded.

Example 14–4 Output from an update conflict

Conflict detected at 15:03:18 on 03-25-2002
Datastore : /tmp/subscriberds
Transmitting name : MASTERDS
Table : TAB
Conflicting update tuple timestamp : 3C9FACB6000612B0
Existing tuple timestamp : 3C9FACB600085CA0
The existing tuple :
< 6, 99, 3C9FACB600085CA0>
The conflicting update tuple :
<TSTAMP :3C9FACB6000612B0, COL2 : 50>
The old values in the conflicting update:

Note: If the transaction was discarded, the contents of the entire
transaction are logged in the report file.

Reporting conflicts

Resolving Replication Conflicts 14-11

<TSTAMP :3C9FAC85000E01F0, COL2 : 2>
The key columns for the tuple:
<COL1 : 6>
Transaction containing this update skipped
Failed transaction:
Update table TAB with keys:
<COL1 : 6>
New tuple value: <TSTAMP :3C9FACB6000612B0, COL2 : 50>
End of failed transaction

Reporting delete/update conflicts
A delete/update conflict record is issued when an update is attempted on a row that
has more recently been deleted. This record reports:

■ The timestamp and values for the conflicting update tuple or conflicting delete
tuple, whichever tuple failed.

■ If the delete tuple failed, the report also includes the timestamp and values for the
existing tuple, which is the surviving update tuple with which the delete tuple
was in conflict.

■ The key column values used to identify the record.

■ The action that was taken when the conflict was detected (discard the single row
update or the entire transaction).

The format of a record that indicates a delete conflict with a failed update is:

Conflicting update tuple timestamp : <timestamp in binary format>
The conflicting update tuple :
TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
This transaction skipped
The tuple does not exist
Transaction containing this update skipped
Update table <user>.<table> with keys:
<<key column name> : <key column value>>
New tuple value:
<TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
End of failed transaction

Example 14–5 shows the output from a delete/update conflict caused by an update on
a row that has more recently been deleted. Because there is no row to update, the
update from SUBSCRIBERDS is discarded.

Example 14–5 Output from a delete/update conflict: delete is more recent

Conflict detected at 15:27:05 on 03-25-2002
Datastore : /tmp/masterds
Transmitting name : SUBSCRIBERDS
Table : TAB
Conflicting update tuple timestamp : 3C9FB2460000AFC8
The conflicting update tuple :
<TSTAMP :3C9FB2460000AFC8, COL2 : 99>
The tuple does not exist

Note: If the transaction was discarded, the contents of the entire
transaction are logged in the report file. TimesTen cannot detect
delete/insert conflicts.

Reporting conflicts

14-12 Oracle TimesTen In-Memory Database Replication Guide

Transaction containing this update skipped
Failed transaction:
Update table TAB with keys:
<COL1 : 2>
New tuple value: <TSTAMP :3C9FB2460000AFC8,
COL2 : 99>
End of failed transaction

The format of a record that indicates an update conflict with a failed delete is:

Conflicting binary delete tuple timestamp : <timestamp in binary format>
Existing binary tuple timestamp : <timestamp in binary format>
The existing tuple :
<<column value> [,<column value>. ..]>
The key columns for the tuple:
<<key column name> : <key column value>>
Transaction containing this delete skipped
Failed transaction:
Delete table <user>.<table> with keys:
<<key column name> : <key column value>>
End of failed transaction

Example 14–6 shows the output from a delete/update conflict caused by a delete on a
row that has more recently been updated. Because the row was updated more recently
than the delete, the delete from masterds is discarded.

Example 14–6 Output from a delete/update conflict: update is more recent

Conflict detected at 15:27:20 on 03-25-2002
Datastore : /tmp/subscriberds
Transmitting name : MASTERDS
Table : TAB
Conflicting binary delete tuple timestamp : 3C9FB258000708C8
Existing binary tuple timestamp : 3C9FB25800086858
The existing tuple :
< 147, 99, 3C9FB25800086858>
The key columns for the tuple:
<COL1 : 147>
Transaction containing this delete skipped
Failed transaction:
Delete table TAB with keys:
<COL1 : 147>

Suspending and resuming the reporting of conflicts
Provided your applications are well-behaved, replication usually encounters and
reports only sporadic conflicts. However, it is sometimes possible under heavy load to
trigger a flurry of conflicts in a short amount of time, particularly when applications
are in development and such errors are expected. This can potentially have a negative
impact on the performance of the host because of excessive writes to the conflict report
file and the large number of SNMP traps that can be generated.

To avoid overwhelming a host with replication conflicts, you can configure replication
to suspend conflict reporting when the number of conflicts per second has exceeded a
user-specified threshold. Conflict reporting may also be configured to resume once the
conflicts per second have fallen below a user-specified threshold.

Conflict reporting suspension and resumption can be detected by an application by
catching the SNMP traps ttRepConflictReportStoppingTrap and
ttRepConflictReportStartingTrap, respectively. See "Diagnostics through

The conflict report XML Document Type Definition

Resolving Replication Conflicts 14-13

SNMP Traps" in Oracle TimesTen In-Memory Database Error Messages and SNMP Traps
for more information.

To configure conflict reporting to be suspended and resumed based on the number of
conflicts per second, use the CONFLICT REPORTING SUSPEND AT and CONFLICT
REPORTING RESUME AT attributes for the STORE clause of a replication scheme.

If the replication agent is stopped while conflict reporting is suspended, conflict
reporting is enabled when the replication agent is restarted. The SNMP trap
ttRepConflictReportingStartingTrap is not sent if this occurs. This means
that an application that monitors the conflict report suspension traps must also
monitor the traps for replication agent stopping and starting.

If you set CONFLICT REPORTING RESUME AT to 0, reporting does not resume until
the replication agent is restarted.

Example 14–7 demonstrates the configuration of a replication schemes where conflict
reporting ceases when the number of conflicts exceeds 20 per second, and conflict
reporting resumes when the number of conflicts drops below 10 per second.

Example 14–7 Configuring conflict reporting thresholds

CREATE REPLICATION r1
ELEMENT elem_accounts_1 TABLE accounts
 CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN tstamp
 UPDATE BY SYSTEM
 ON EXCEPTION ROLLBACK WORK
 REPORT TO 'conflicts' FORMAT XML
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"
ELEMENT elem_accounts_2 TABLE accounts
 CHECK CONFLICTS BY ROW TIMESTAMP
 COLUMN tstamp
 UPDATE BY SYSTEM
 ON EXCEPTION ROLLBACK WORK
 REPORT TO 'conflicts' FORMAT XML
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"
STORE westds ON "westcoast"
 CONFLICT REPORTING SUSPEND AT 20
 CONFLICT REPORTING RESUME AT 10
STORE eastds ON "eastcoast"
 CONFLICT REPORTING SUSPEND AT 20
 CONFLICT REPORTING RESUME AT 10;

The conflict report XML Document Type Definition
The TimesTen XML format conflict report is are based on the XML 1.0 specification
(http://www.w3.org/TR/REC-xml). The XML Document Type Definition (DTD)
for the replication conflict report is a set of markup declarations that describes the
elements and structure of a valid XML file containing a log of replication conflicts.
This DTD can be found in the XML header file, identified by the suffix .xml, that is
created when replication is configured to report conflicts to an XML file. User
applications which understand XML use the DTD to parse the rest of the XML
replication conflict report. For more information on reading and understanding XML
Document Type Definitions, see http://www.w3.org/TR/REC-xml.

<?xml version="1.0"?>
<!DOCTYPE ttreperrorlog [

The conflict report XML Document Type Definition

14-14 Oracle TimesTen In-Memory Database Replication Guide

 <!ELEMENT ttrepconflictreport(conflict*) >
 <!ELEMENT repconflict (header, conflict, scope, failedtransaction) >
 <!ELEMENT header (time, datastore, transmitter, table) >
 <!ELEMENT time (hour, min, sec, year, month, day) >
 <!ELEMENT hour (#PCDATA) >
 <!ELEMENT min (#PCDATA) >
 <!ELEMENT sec (#PCDATA) >
 <!ELEMENT year (#PCDATA) >
 <!ELEMENT month (#PCDATA) >
 <!ELEMENT day (#PCDATA) >
 <!ELEMENT datastore (#PCDATA) >
 <!ELEMENT transmitter (#PCDATA) >
 <!ELEMENT table (tableowner, tablename) >
 <!ELEMENT tableowner (#PCDATA) >
 <!ELEMENT tablename (#PCDATA) >
 <!ELEMENT scope (#PCDATA) >
 <!ELEMENT failedtransaction ((insert | update | delete)+) >
 <!ELEMENT insert (sql) >
 <!ELEMENT update (sql, keyinfo, newtuple) >
 <!ELEMENT delete (sql, keyinfo) >
 <!ELEMENT sql (#PCDATA) >
 <!ELEMENT keyinfo (column+) >
 <!ELEMENT newtuple (column+) >
 <!ELEMENT column (columnname, columntype, columnvalue) >
 <!ATTLIST column
 pos CDATA #REQUIRED >
 <!ELEMENT columnname (#PCDATA) >
 <!ELEMENT columnvalue (#PCDATA) >
 <!ATTLIST columnvalue
 isnull (true | false) "false">
 <!ELEMENT existingtuple (column+) >
 <!ELEMENT conflictingtuple (column+) >
 <!ELEMENT conflictingtimestamp(#PCDATA) >
 <!ELEMENT existingtimestamp (#PCDATA) >
 <!ELEMENT oldtuple (column+) >
 <!ELEMENT conflict (conflictingtimestamp, existingtimestamp*,
 existingtuple*, conflictingtuple*,
 oldtuple*, keyinfo*) >
<!ATTLIST conflict
 type (insert | update | deletedupdate | updatedeleted) #REQUIRED>
<!ENTITY logFile SYSTEM "Filename.include">
]>
<ttrepconflictreport>
 &logFile;
</ttrepconflictreport>

The main body of the document
The .xml file for the XML replication conflict report is merely a header, containing the
XML Document Type Definition that describes the report format and links to a file
with the suffix .include. This include file is the main body of the report, containing
each replication conflict as a separate element. There are three possible types of
elements: insert, update and delete/update conflicts. Each conflict type requires a
slightly different element structure.

The uniqueness conflict element
A uniqueness conflict occurs when a replicated insertion fails because a row with an
identical key column was inserted more recently. See "Reporting uniqueness conflicts"

The conflict report XML Document Type Definition

Resolving Replication Conflicts 14-15

on page 14-9 for a description of the information that is written to the conflict report
for a uniqueness conflict.

Example 14–8 illustrates the format of a uniqueness conflict XML element, using the
values from Example 14–3.

Example 14–8 Uniqueness conflict element

<repconflict>
 <header>
 <time>
 <hour>13</hour>
 <min>36</min>
 <sec>00</sec>
 <year>2002</year> <month>03</month>
 <day>25</day>
 </time>
 <datastore>/tmp/masterds</datastore>
 <transmitter>SUBSCRIBERDS</transmitter>
 <table>
 <tableowner>REPL</tableowner>
 <tablename>TAB</tablename>
 </table>
 </header>
 <conflict type="insert">
 <conflictingtimestamp>3C9F983D00031128</conflictingtimestamp>
 <existingtimestamp>3C9F983E000251C0</existingtimestamp>
 <existingtuple>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9F983E000251C0</columnvalue>
 </column>
 </existingtuple>
 <conflictingtuple>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>100</columnvalue>
 </column>
 <column pos="3">
 <columname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9F983D00031128</columnvalue>
 </column>
 </conflictingtuple>
 <keyinfo>

The conflict report XML Document Type Definition

14-16 Oracle TimesTen In-Memory Database Replication Guide

 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 </keyinfo>
 </conflict>
 <scope>TRANSACTION</scope>
 <failedtransaction>
 <insert>
 <sql>Insert into table TAB </sql>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>100</columnvalue>
 </column>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>3C9F983D00031128</columnvalue>
 </column>
 </insert>
 </failedtransaction>
</repconflict>

The update conflict element
An update conflict occurs when a replicated update fails because the row was updated
more recently. See "Reporting update conflicts" on page 14-10 for a description of the
information that is written to the conflict report for an update conflict.

Example 14–9 illustrates the format of an update conflict XML element, using the
values from Example 14–4.

Example 14–9 Update conflict element

<repconflict>
 <header>
 <time>
 <hour>15</hour>
 <min>03</min>
 <sec>18</sec>
 <year>2002</year>
 <month>03</month>
 <day>25</day>
 </time>
 <datastore>/tmp/subscriberds</datastore>
 <transmitter>MASTERDS</transmitter>
 <table>
 <tableowner>REPL</tableowner>
 <tablename>TAB</tablename>
 </table>
 </header>
 <conflict type="update">
 <conflictingtimestamp>

The conflict report XML Document Type Definition

Resolving Replication Conflicts 14-17

 3C9FACB6000612B0
 </conflictingtimestamp>
 <existingtimestamp>3C9FACB600085CA0</existingtimestamp>
 <existingtuple>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>6</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>99</columnvalue>
 </column>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FACB600085CA0></columnvalue>
 </column>
 </existingtuple>
 <conflictingtuple>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FACB6000612B0</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>50</columnvalue>
 </column>
 </conflictingtuple>
 <oldtuple>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FAC85000E01F0</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 </oldtuple>
 <keyinfo>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>6</columnvalue>
 </column>
 </keyinfo>
</conflict>
<scope>TRANSACTION</scope>
<failedtransaction>
 <update>
 <<sql>Update table TAB</sql>
 <<keyinfo>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>

The conflict report XML Document Type Definition

14-18 Oracle TimesTen In-Memory Database Replication Guide

 <columnvalue>6</columnvalue>
 </column>
 </keyinfo>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FACB6000612B0</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>50</columnvalue>
 </column>
 </update>
 </failedtransaction>
</repconflict>

The delete/update conflict element
A delete/update conflict occurs when a replicated update fails because the row to be
updated has already been deleted on the database receiving the update, or when a
replicated deletion fails because the row has been updated more recently. See
"Reporting delete/update conflicts" on page 14-11 for a description of the information
that is written to the conflict report for a delete/update conflict.

Example 14–10 illustrates the format of a delete/update conflict XML element in
which an update fails because the row has been deleted more recently, using the
values from Example 14–5.

Example 14–10 Delete/update conflict element: delete is more recent

<repconflict>
 <header>
 <time>
 <hour>15</hour>
 <min>27</min>
 <sec>05</sec>
 <year>2002</year>
 <month>03</month>
 <day>25</day>
 </time>
 <datastore>/tmp/masterds</datastore>
 <transmitter>SUBSCRIBERDS</transmitter>
 <table>
 <tableowner>REPL</tableowner>
 <tablename>TAB</tablename>
 </table>
 </header>
 <conflict type="update">
 <conflictingtimestamp>
 3C9FB2460000AFC8
 </conflictingtimestamp>
 <conflictingtuple>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FB2460000AFC8</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>

The conflict report XML Document Type Definition

Resolving Replication Conflicts 14-19

 <columntype>NUMBER(38)</columntype>
 <columnvalue>99/columnvalue>
 </column>
 </conflictingtuple>
 <keyinfo>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 </keyinfo>
 </conflict>
 <scope>TRANSACTION</scope>
 <failedtransaction>
 <update>
 <sql>Update table TAB</sql>
 <keyinfo>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>2</columnvalue>
 </column>
 </keyinfo>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FB2460000AFC8</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>99</columnvalue>
 </column>
 </update>
 </failedtransaction>
</repconflict>

Example 14–11 illustrates the format of a delete/update conflict XML element in
which a deletion fails because the row has been updated more recently, using the
values from Example 14–6.

Example 14–11 Delete/update conflict element: update is more recent

<repconflict>
 <header>
 <time>
 <hour>15</hour>
 <min>27</min>
 <sec>20</sec>
 <year>2002</year>
 <month>03</month>
 <day>25</day>
 </time>
 <datastore>/tmp/masterds</datastore>
 <transmitter>MASTERDS</transmitter>
 <table>
 <tableowner>REPL</tableowner>
 <tablename>TAB</tablename>
 </table>
 </header>

The conflict report XML Document Type Definition

14-20 Oracle TimesTen In-Memory Database Replication Guide

 <conflict type="delete">
 <conflictingtimestamp>
 3C9FB258000708C8
 </conflictingtimestamp>
 <existingtimestamp>3C9FB25800086858</existingtimestamp>
 <existingtuple>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>147</columnvalue>
 </column>
 <column pos="2">
 <columnname>COL2</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>99</columnvalue>
 </column>
 <column pos="3">
 <columnname>TSTAMP</columnname>
 <columntype>BINARY(8)</columntype>
 <columnvalue>3C9FB25800086858</columnvalue>
 </column>
 </existingtuple>
 <keyinfo>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>147</columnvalue>
 </column>
 </keyinfo>
 </conflict>
 <scope>TRANSACTION</scope>
 <failedtransaction>
 <delete>
 <sql>Delete from table TAB</sql>
 <keyinfo>
 <column pos="1">
 <columnname>COL1</columnname>
 <columntype>NUMBER(38)</columntype>
 <columnvalue>147</columnvalue>
 </column>
 </keyinfo>
 </delete>
 </failedtransaction>
</repconflict>

Index-1

Index

A
active database

change to standby, 4-7
detecting dual active masters, 4-8

active standby pair, 6-1
add or drop table column, 6-1
adding host to cluster, 7-29
adding or dropping a subscriber, 6-5
adding or dropping cache groups, 6-5
adding sequences and cache groups, 6-5
altering, 6-5
changing PORT or TIMEOUT connection

attributes, 6-5
configuring network interfaces, 3-12
create or drop index, 6-1
create or drop synonym, 6-1
defined, 1-6
detecting dual active masters, 4-8
disaster recovery, 5-9
dropping sequences and cache groups, 6-5
DSN, 3-2
examples of altering, 6-6
failback, 4-6, 5-7
overview, 1-6
recover active when standby not ready, 4-5
recovering active database, 4-4
replicating a global AWT cache group, 5-4
replicating a local read-only cache group, 5-2
replicating materialized views, 3-14
replicating sequences, 3-14
restrictions, 3-1
return service, 3-4
reverse roles, 4-7
setting up, 4-3
states, 4-1
SUBSCRIBER clause, 3-3
subscriber failure, 4-7

active standby pair with cache groups
recover active when standby not ready, 5-5
recovering active database, 5-4
subscriber failure, 5-8

ADD ELEMENT clause
DATASTORE, 13-3

ADMIN privilege, 3-2, 9-5
aging

replication, 1-15
ALTER ELEMENT clause, 13-2
ALTER REPLICATION state

using, 13-1
ALTER TABLE

and replication, 13-8
ALTER USER statement, 13-1
AppCheckCmd Clusterware attribute, 8-8
AppFailoverDelay Clusterware attribute, 8-26
AppFailureInterval attribute

Oracle Clusterware, 8-9
AppFailureThreshold Clusterware attribute, 8-27
application failover

Oracle Clusterware, 7-6
AppName Clusterware attribute, 8-10
AppRestartAttempts attribute

Oracle Clusterware, 8-11
AppScriptTimeout Clusterware attribute, 8-28
AppStartCmd Clusterware attribute, 8-12
AppStopCmd Clusterware attribute, 8-13
AppType Clusterware attribute, 8-14
AppUptimeThreshold attribute

Oracle Clusterware, 8-15
asynchronous writethrough cache group

propagating to Oracle database, 1-13
replication, 1-12

attributes, connection
required, 10-6

autocommit
and RETURN RECEIPT BY REQUEST, 9-13
and RETURN TWOSAFE BY REQUEST, 9-14
RETURN RECEIPT BY REQUEST, 3-5
RETURN TWOSAFE BY REQUEST, 3-6

autocommit mode
RETURN TWOSAFE, 3-5

automatic catch-up, 11-3
automatic client failover, 3-13, 7-2
AutoRecover Clusterware attribute, 8-29
AWT cache group

propagating to Oracle Database, 1-13
replicating, 1-12, 5-4

AWT cache groups
parallel threads, 10-7

Index-2

B
bidirectional general workload

syntax example, 9-30
update conflicts, 9-31

bidirectional replication, 1-8
bidirectional replication scheme

recovery, 9-3
return twosafe service, 9-15

bidirectional split workload
syntax example, 9-30

bookmarks in log, 10-11, 12-9

C
cache grid

active standby pairs, 5-4
add cache group with Oracle Clusterware, 7-16
creating a cluster, 7-16
drop cache group with Oracle Clusterware, 7-17
managing with Oracle Clusterware, 7-15
recovery with Oracle Clusterware, 7-16, 7-22
schema changes with Oracle Clusterware, 7-16

cache groups
replicating, 1-12
replicating a global AWT cache group, 5-4
replicating a read-only cache group, 5-2
replicating a user managed cache group, 5-1

CacheConnect Clusterware attribute, 7-6, 8-16
catch-up feature

replication, 11-3
CHECK CONFLICTS clause

examples, 14-5
in CREATE REPLICATION statement, 9-11

client failover, 7-2
automatic client failover, 3-13

cluster
virtual IP addresses, 7-2

cluster agent, 7-11
cluster manager

role, 9-2
cluster status, 7-32
cluster.oracle.ini file, 7-2

advanced availability, 7-5
advanced availability, one subscriber, 7-5
and sys.odbc.ini file, 7-4
application failover, 7-6, 7-7
attribute descriptions, 8-1
automatic recovery from failure of both master

nodes, 7-9
basic availability, 7-5
basic availability, one subscriber, 7-5
cache grid, 7-6
cache groups, 7-6
examples, 7-4
excluding tables, cache groups and

sequences, 7-10
location, 7-4
manual recovery from failure of both master

nodes, 7-9
specify route, 7-10

Windows example, 7-7
Clusterware

required privileges, 7-3
columns

compressed, 3-4, 9-7
COMPRESS TRAFFIC clause

in CREATE ACTIVE STANDBY PAIR
statement, 3-11

in CREATE REPLICATION statement, 9-17, 9-23
compression

table columns, 3-4, 9-7
configuring replication, 9-1
configuring the network, 10-1
conflict report

XML Document Type Definition, 14-13
conflict reporting, 14-7
CONFLICT REPORTING clause

in CREATE REPLICATION statement, 9-17
conflict resolution, 14-1

update rules, 14-4
conflict types, 14-1
controlling replication, 10-15
copying a database

privileges, 4-2
copying a master database, 10-12
CREATE ACTIVE STANDBY PAIR statement, 4-3,

5-2
syntax, 3-3

create or drop table, 6-1
CREATE REPLICATION statement

defining data store element, 9-8
defining table element, 9-9
use of, 9-5

CREATE USER statement, 13-1
crsTT directories, 7-3

D
data source name, 9-6
data types

size limits, 3-4, 9-7
database

duplicating, 10-12
failed, 3-12
ForceConnect connection attribute, 11-3
temporary, 3-2, 9-8

database name, 9-6
database objects

excluding from active standby pair, 3-13
DatabaseCharacterSet data store attribute, 10-6
DatabaseFailoverDelay Clusterware attribute, 8-30
databases

establishing, 10-6
failed, 9-25
managing logs, 10-9
recovering, 9-2
required connection attributes for

replication, 10-6
setting state, 10-15

DATASTORE element, 9-7, 9-8

Index-3

adding to replication scheme, 13-3
and materialized views, 9-11
and nonmaterialized views, 9-11

DDLReplicationAction connection attribute, 6-1
DDLReplicationLevel connection attribute, 6-1
default column values

changing, 13-8
DISABLE RETURN clause

in CREATE ACTIVE STANDBY PAIR
statement, 3-9

in CREATE REPLICATION statement, 9-16
DISABLE RETURN policy, 9-21

active standby pair, 3-9, 3-10
disaster recovery

active standby pair with AWT cache group, 5-9
disaster recovery subscriber

Oracle Clusterware, 7-14
distributed workload configuration, 1-9

recovery issues, 9-3
DNS server

UNIX, 10-3
Windows, 10-5

DROP REPLICATION statement, 2-8, 13-8
DROP USER statement, 13-1
dropping replication scheme, 2-8, 13-8
DSN

creating, 2-5, 10-6
define for active standby pair, 3-2
defining, 9-6

DualMaster
Oracle Clusterware, 7-8

duplicating a database
privileges, 4-2
with cache groups, 4-2

duplicating a master database, 10-12
DURABLE COMMIT clause

in CREATE ACTIVE STANDBY PAIR
statement, 3-10

in CREATE REPLICATION statement, 9-16
DURABLE COMMIT policy, 9-22

E
element

DATASTORE, 9-8
defined, 1-1

ELEMENT descriptions, 9-7
EXACT

table definition, 9-17
example

replicating tables to different subscribers, 9-29
EXCLUDE clause

in CREATE ACTIVE STANDBY PAIR
statement, 3-13

EXCLUDE SEQUENCE clause
in ALTER REPLICATION statement, 13-4
in CREATE REPLICATION statement, 9-8

EXCLUDE TABLE clause
in ALTER REPLICATION statement, 13-4
in CREATE REPLICATION statement, 9-8

F
failback, 4-6

active standby pair, 5-7
failed database

connecting to, 3-12, 9-25
failed state

log space, 9-24
log threshold, 3-11
replication, 10-15

failover, 3-13
failover and recovery

issues, 9-2
FAILTHRESHOLD attribute, 11-2
FAILTHRESHOLD clause

active standby pair, 3-9
altering, 13-7
example, 9-29
in CREATE ACTIVE STANDBY PAIR

statement, 3-11
in CREATE REPLICATION statement, 9-17, 9-20,

9-24
subscriber failures, 11-2

failure
return service, 3-9
subscriber, 4-7, 11-2

failure recovery script, 11-7
failure threshold

description, 10-11
displaying, 12-6
example, 9-29
subscriber failures, 11-2

FailureThreshold Clusterware attribute, 8-31
ForceConnect connection attribute, 11-3, 11-7
foreign keys

replication, 1-15, 9-9
full replication, 1-8
full store name

active standby pair, 3-3

G
general workload

syntax example, 9-30
GRANT statement, 13-1
GridPort Clusterware attribute, 7-6, 8-17

H
host name

identifying, 9-8, 10-2
hostname command, 9-8

I
INCLUDE clause

in CREATE ACTIVE STANDBY PAIR
statement, 3-13

INCLUDE SEQUENCE clause
in ALTER REPLICATION statement, 13-3
in CREATE REPLICATION statement, 9-9

Index-4

INCLUDE TABLE
in CREATE REPLICATION statement, 9-9

INCLUDE TABLE clause
in ALTER REPLICATION statement, 13-3

IP addresses
replication, 10-2

L
LOB columns

size limit, 3-4, 9-7
LOCAL COMMIT ACTION clause

active standby pair, 3-10
in CREATE REPLICATION statement, 9-17

LOCAL COMMIT ACTION policy, 9-23
log

locating bookmarks, 10-11, 12-9
management, 10-9
size and persistence, 10-9
threshold value, 9-24, 10-11

log failure threshold, 9-24
log sequence number, 12-9
log threshold value

active standby pair, 3-11
LogBufMB connection attribute, 10-10
LogBufParallelism first connection attribute, 10-7
LogFileSize connection attribute, 10-10
logging, 10-10
logs

setting the size, 10-10
LSN, 12-9

M
master catch-up, 11-3
master database

defined, 9-6
MasterHosts Clusterware attribute, 8-6
MasterStoreAttribute Clusterware attribute, 8-32
MasterVIP Clusterware attribute, 8-18
materialized views

active standby pair, 3-14
replicating, 9-10

monitoring replication, 12-1

N
network configuration

replication, 10-1
NO RETURN clause

in CREATE ACTIVE STANDBY PAIR
statement, 3-6

in CREATE REPLICATION statement, 9-16
NVARCHAR columns

size limit, 3-4, 9-7
NVARCHAR2 columns

size limit, 3-4, 9-7

O
ocrConfig option, 7-12

ON DELETE CASCADE clause
replication, 1-15

Oracle Cluster Registry
configuring for TimesTen cluster, 7-12

Oracle Clusterware, 7-1
add cache group to cache grid, 7-16
add subscriber not managed by Oracle

Clusterware, 7-28
adding active standby pair to cluster, 7-27
adding subscriber to active standby pair, 7-26
altering tables and cache groups, 7-26
AppFailureInterval attribute, 8-9
application failure, 7-8
AppRestartAttempts, 8-11
AppScriptTimeout attribute, 7-8
AppType=DualMaster, 7-8
AppUptimeThreshold, 8-15
automatic recovery, 7-8
automatic recovery from dual failure, 7-21
cache grid, 7-6
cache grid recovery, 7-16, 7-22
changing cache administration user name or

password, 7-32
changing internal user name or password, 7-32
cluster.oracle.ini and sys.odbc.ini files, 7-4
creating a cluster of cache grid members, 7-16
creating or dropping tables and cache

groups, 7-26
crs_start command, 7-25
crs_stop command, 7-25
crsTT directories, 7-3
drop cache group from cache grid, 7-17
failure of both master nodes, 7-8
failure of more than two master hosts, 7-25
forced switchover, 7-25
GridPort attribute, 7-6
host maintenance, 7-31
machine room maintenance, 7-31
manual recovery for advanced availability, 7-22
manual recovery for basic availability, 7-23
message log files, 7-35
moving a database to another host, 7-31
network maintenance, 7-31
rebuild subscriber not managed by Oracle

Clusterware, 7-29
recovery process, 7-18
recovery when RETURN TWOSAFE, 7-24
remote disaster recovery subscriber, 7-14
removing active standby pair from cluster, 7-29
removing host from cluster, 7-30
removing subscriber from active standby

pair, 7-27
required privileges, 7-3
restricted commands, 7-3
rolling upgrade, 7-26
routing, 7-10
schema changes in cache grid, 7-16
status, 7-32
stopping the TimesTen daemon, 7-12
storage for backups, 7-9

Index-5

subscriber not managed by Oracle
Clusterware, 7-15

switching the active and the standby, 7-30
TimesTen advanced level, 7-2
TimesTen basic level, 7-2
TimesTen cluster agent, 7-12
TimesTen daemon monitor, 7-12
tmp directory, 7-3
ttDaemonAdmin, 7-12
upgrading TimesTen, 7-26
using RepDDL attribute, 7-9
using with cache grid, 7-15
virtual IP addresses, 7-2

Oracle Clusterware attributes
AppCheckCmd, 8-8
AppFailoverDelay, 8-26
AppFailureThreshold, 8-27
AppName, 8-10
AppScriptTimeout, 8-28
AppStartCmd, 8-12
AppStopCmd, 8-13
AppType, 8-14
AutoRecover, 8-29
CacheConnect, 8-16
conditional, 8-1
DatabaseFailoverDelay, 8-30
FailureThreshold, 8-31
GridPort, 8-17
MasterHosts, 8-6
MasterStoreAttribute, 8-32
MasterVIP, 8-18
optional, 8-2, 8-25
RemoteSubscriberHosts, 8-19
RepBackupDir, 8-20
RepBackupPeriod, 8-33
RepDDL, 7-10, 8-34
RepFullBackupCycle, 8-35
required, 8-1, 8-5
ReturnServiceAttribute, 8-36
SubscriberHosts, 8-21
SubscriberStoreAttribute, 8-37
SubscriberVIP, 8-22
TimesTenScriptTimeout, 8-38
VIPInterface, 8-23
VIPNetMask, 8-24

owner
replication scheme, 9-6

P
parallel replication, 10-7

attributes, 10-6
automatic, 10-7
AWT, 10-7
DDL statements, 10-7
DML statements, 10-7

partitions
in a table, 9-25

PassThrough connection attribute
and RETURN TWOSAFE, 3-5

and RETURN TWOSAFE BY REQUEST, 3-6
pause state

replication, 10-15
performance

logging attributes, 10-10
replication, 12-17

PL/SQL object
replicating in an active standby pair, 6-2

PL/SQL objects
replicating, 13-3

PORT assignment
active standby pair, 3-11

PORT attribute
in CREATE REPLICATION statement, 9-17, 9-24

ports
dynamic, 9-24
static, 9-24

privilege
create a replication scheme, 9-5
create an active standby pair, 3-2

propagation, 1-10
example, 9-30

PROPAGATOR clause
example, 9-30

propagator database
defined, 9-6
definition, 1-10

R
read-only cache group

replicating, 1-13
ReceiverThreads first connection attribute, 10-6
recovering failed databases, 9-2
recovery

return service, 3-9
RELAXED

table definition, 9-17, 9-25
RemoteSubscriberHosts Clusterware attribute, 8-19
RepBackupDir Clusterware attribute, 8-20
RepBackupPeriod Clusterware attribute, 8-33
RepDDL Clusterware attribute, 7-10, 8-34

example, 7-9
RepFullBackupCycle Clusterware attribute, 8-35
replicated tables

requirements, 9-7
replicating over a network, 1-10, 10-1
replication

across releases, 10-13
aging, 1-15
and ttAdmin, 10-13
bidirectional, 1-8
configuring timestamp comparison, 14-5
conflict reporting, 14-7
conflict resolution, 14-1
controlling, 10-15
described, 1-1
design decisions, 9-1
element, 1-1, 9-7
failed state, 10-15

Index-6

FAILTHRESHOLD clause in CREATE ACTIVE
STANDBY PAIR statement, 3-9

FAILTHRESHOLD clause in CREATE
REPLICATION statement, 9-20

foreign keys, 1-15, 9-9
gauging performance, 12-9
host IP addresses, 10-2
monitoring, 12-1
of materialized views, 9-10
of sequences, 9-9
ON DELETE CASCADE clause, 1-15
parallelism, see parallel replication
pause state, 10-15
relaxed checking, 9-25
restart policy, 10-14
return receipt, 1-4
start state, 10-15
starting, 10-13
state, 10-15
stop state, 10-15
stopping, 10-13
tables with different definitions, 9-25
timestamp column maintenance, 14-6
unidirectional, 1-8

replication agent
defined, 1-2
starting, 2-6, 10-13
stopping, 2-8, 10-13

replication daemon, see "replication agent"
replication scheme

active standby pair, 1-6
applying to DSNs, 10-11
configuring, 9-1
defining, 9-5
examples, 9-27
for cache groups, 1-12
naming, 9-6
owner, 9-6

replication schemes
types, 1-6

replication stopped
return services policy, 9-20

ReplicationApplyOrdering data store attribute, 10-6,
10-7

ReplicationParallelism data store attribute, 10-6,
10-7

repschemes
ttIsql command, 12-6

resource
defined, 7-2

restart policy, 10-14
restrictions

active standby pairs, 3-1
RESUME RETURN clause

in CREATE ACTIVE STANDBY PAIR
statement, 3-10

in CREATE REPLICATION statement, 9-16
RESUME RETURN policy, 9-22

active standby pair, 3-10
return receipt

definition, 1-2
RETURN RECEIPT BY REQUEST clause

example, 9-29
in CREATE ACTIVE STANDBY PAIR

statement, 3-5
in CREATE REPLICATION statement, 9-13

RETURN RECEIPT clause
active standby pair, 3-4
example, 9-28, 9-29
in CREATE REPLICATION statement, 9-13

RETURN RECEIPT failure policy
report settings, 12-6

return receipt replication, 1-4
RETURN RECEIPTclause

example, 9-29
RETURN RECEPT timeout errors, 1-5, 9-17
return service

active standby pair, 3-4
failure policy, 3-9
in CREATE REPLICATION statement, 9-12
performance and recovery tradeoffs, 9-3
recovery policy, 3-9

return service blocking
disabling, 9-19

return service failure policy, 9-18
return service timeout errors, 9-18
RETURN SERVICES clause

in CREATE ACTIVE STANDBY PAIR
statement, 3-9

return services policy
when replication stopped, 9-20

RETURN SERVICES WHEN REPLICATION
STOPPED clause

in CREATE REPLICATION statement, 9-16
RETURN TWOSAFE

Oracle Clusterware recovery, 7-24
return twosafe

bidirectional replication scheme, 9-15
definition, 1-2

RETURN TWOSAFE BY REQUEST clause
in CREATE ACTIVE STANDBY PAIR

statement, 3-6
in CREATE REPLICATION statement, 9-14

RETURN TWOSAFE clause
in CREATE ACTIVE STANDBY PAIR

statement, 3-5
in CREATE REPLICATION statement, 9-15

RETURN WAIT TIME clause
in CREATE REPLICATION statement, 9-16

ReturnServiceAttribute Clusterware attribute, 8-36
example, 7-24

REVOKE statement, 13-1
roles

reverse, 4-7
ROUTE clause

in CREATE ACTIVE STANDBY PAIR
statement, 3-12

in replication scheme, 9-26

Index-7

S
selective replication, 1-8
sequence

adding to replication scheme, 13-2
changing element name, 13-6
dropping from replication scheme, 13-4

SEQUENCE element, 9-7
sequences

replicating, 1-14, 9-9
replicating in an active standby pair, 3-14

split workload, 1-9
syntax example, 9-30

split workload replication scheme
recovery, 9-3

SQLGetInfo function, 9-25
checking database state, 3-12
monitoring subscriber, 11-2

standby database
change to active, 4-7
recover from failure, 4-6, 5-7

start state
replication, 10-15

starting the replication agent, 2-6, 10-13
status

cluster, 7-32
Oracle Clusterware, 7-32

stop state
replication, 10-15

stopping the replication agent, 2-8, 10-13
STORE attributes

in CREATE ACTIVE STANDBY PAIR
statement, 3-6

in CREATE REPLICATION statement, 9-16
subscriber

adding to replication scheme, 13-5
dropping from replication scheme, 13-6

SUBSCRIBER clause
and return service, 9-12
in CREATE ACTIVE STANDBY PAIR

statement, 3-3
subscriber database

defined, 9-6
subscriber failure, 4-7, 11-2

active standby pair with cache groups, 5-8
SubscriberHosts Clusterware attribute, 8-21
subscribers

maximum number, 9-28
SubscriberStoreAttribute Clusterware attribute, 8-37
SubscriberVIP Clusterware attribute, 8-22

T
table

adding to replication scheme, 13-2
changing element name, 13-6
dropping from replication scheme, 13-4
excluding from database, 13-4
including in database, 13-3
partitioned, 9-25
relaxed checking, 9-25

TABLE DEFINITION CHECKING clause
examples, 9-25
in CREATE REPLICATION statement, 9-17

table definitions, 9-17
TABLE element, 9-7
table element, 9-9
table requirements

active standby pairs, 3-3
replication schemes, 9-7

tables
altering and replication, 13-8

threshold log setting, 9-24, 10-11
active standby pair, 3-11

timeout
return service for an active standby pair, 3-8

TIMEOUT clause
in CREATE REPLICATION statement, 9-17

timestamp
from operating system, 14-4

timestamp column maintenance
by user, 14-7
system, 14-6

timestamp comparison
configuring, 14-5
local transactions, 14-5

TimesTen cluster agent, 7-11, 7-12
TimesTen daemon monitor, 7-12
TimesTenScriptTimeout Clusterware attribute, 8-38
track

parallel replication, 10-8
TRANSMIT DURABLE clause

in CREATE REPLICATION statement, 9-11
TRANSMIT NONDURABLE clause

and recovery, 11-7
in CREATE REPLICATION statement, 9-11

trapped transaction, 11-4
TRUNCATE TABLE statement, 13-8
truncating a replicated table, 13-8
TT_VARCHAR columns

size limit, 3-4, 9-7
ttAdmin utility

-ramPolicy option, 11-6, 11-7
-repPolicy option, 10-14
-repStart option, 10-14
-repStop option, 10-14

ttCkpt built-in procedure, 10-10
ttCkptBlocking built-in procedure, 10-10
ttCRSActiveService process, 7-13
ttCRSAgent process, 7-12
ttcrsagent.options file, 7-12
ttCRSDaemon process, 7-12
ttCRSMaster process, 7-13
ttCRSsubservice process, 7-13
ttCWAdmin

-beginAlterSchema option, 7-16
ttCWAdmin -beginAlterSchema command, 7-16
ttCWAdmin -endAlterSchema command, 7-16
ttCWAdmin utility, 7-2, 7-5

-endAlterSchema option, 7-16
ocrConfig option, 7-12

Index-8

-relocate option, 7-31
required privileges, 7-3
-status option, 7-32
-switch option, 7-30

ttcwerrors.log file, 7-35
ttcwmsg.log file, 7-35
ttDestroy utility, 11-6
ttDestroyDataStore built-in procedure, 11-6
ttDurableCommit built-in procedure, 3-9, 9-19
ttIsql utility

-f option, 10-11
ttRepAdmin utility

-bookmark option, 12-9
-duplicate option, 9-12, 9-25, 10-12, 11-3, 11-6,

11-7
privileges for -duplicate options, 4-2
-ramLoad option, 11-6
-receiver -list options, 12-4
-self -list options, 12-3
-showconfig option, 12-7
-state option, 10-15

ttRepDuplicate built-in procedure, 11-6
ttRepDuplicateEx C function

privileges, 4-2
ttReplicationStatus built-in procedure, 12-5
ttRepReturnTransitionTrap SNMP trap, 9-21
ttRepStart built-in procedure, 10-13, 13-2
ttRepStop built-in procedure, 10-13, 13-2
ttRepSubscriberStateSet built-in procedure, 10-15
ttRepSubscriberWait built-in procedure

replicating sequences, 3-14, 9-10
ttRepSyncGet built-in procedure, 3-5, 3-6, 9-15
ttRepSyncSet built-in procedure, 3-5, 3-6, 3-7, 3-8,

3-10, 9-18, 9-19
and RETURN RECEIPT BY REQUEST, 9-13
and RETURN TWOSAFE BY REQUEST, 9-14
different return services, 9-29
local action policy, 9-23
overriding LOCAL COMMIT ACTION, 9-17
overriding RETURN WAIT TIME, 9-16
setting return service timeout, 9-18

ttRepSyncSubscriberStatus built-in procedure, 12-15
DISABLE RETURN clause, 9-21

ttRepXactStatus built-in procedure, 3-5, 9-13, 9-23,
12-15

ttRepXactTokenGet built-in procedure, 12-15
TypeMode data store attribute, 10-6

U
unidirectional replication, 1-8
update conflicts

example, 9-31
syntax example, 9-31

V
VARBINARY columns

size limit, 3-4, 9-7
VARCHAR2 columns

size limit, 3-4, 9-7
views

active standby pair, 3-14
VIPInterface Clusterware attribute, 8-23
VIPNetMask Clusterware attribute, 8-24
virtual IP address

Oracle Clusterware, 7-2

W
WINS server

UNIX, 10-3
Windows, 10-5

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility

	What's New
	New features in Release 11.2.2.4.0
	New features in Release 11.2.2.2.0
	New features in Release 11.2.2.1.0
	New features in Release 11.2.2.0.0

	1 Overview of TimesTen Replication
	What is replication?
	Requirements for replication compatibility
	Replication agents
	Copying updates between databases
	Default replication
	Return receipt replication
	Return twosafe replication

	Types of replication schemes
	Active standby pair with read-only subscribers
	Full database replication or selective replication
	Unidirectional or bidirectional replication
	Split workload configuration
	Distributed workload

	Direct replication or propagation

	Cache groups and replication
	Replicating an AWT cache group
	Replicating an AWT cache group with a subscriber propagating to an Oracle database
	Replicating a read-only cache group

	Sequences and replication
	Foreign keys and replication
	Aging and replication

	2 Getting Started
	Configuring an active standby pair with one subscriber
	Step 1: Create the DSNs for the master and the subscriber databases
	Step 2: Create a table in one of the master databases
	Step 3: Define the active standby pair
	Step 4: Start the replication agent on a master database
	Step 5: Set the state of a master database to 'ACTIVE'
	Step 6. Create a user on the active database
	Step 7: Duplicate the active database to the standby database
	Step 8: Start the replication agent on the standby database
	Step 9. Duplicate the standby database to the subscriber
	Step 10: Start the replication agent on the subscriber
	Step 11: Insert data into the table on the active database
	Step 12: Drop the active standby pair and the table

	Configuring a replication scheme with one master and one subscriber
	Step 1: Create the DSNs for the master and the subscriber
	Step 2: Create a table and replication scheme on the master database
	Step 3: Create a table and replication scheme on the subscriber database
	Step 4: Start the replication agent on each database
	Step 5: Insert data into the table on the master database
	Step 6: Drop the replication scheme and table

	3 Defining an Active Standby Pair Replication Scheme
	Restrictions on active standby pairs
	Defining the DSNs for the databases
	Defining an active standby pair replication scheme
	Identifying the databases in the active standby pair
	Table requirements and restrictions for active standby pairs
	Using a return service
	RETURN RECEIPT
	RETURN RECEIPT BY REQUEST
	RETURN TWOSAFE
	RETURN TWOSAFE BY REQUEST
	NO RETURN

	Setting STORE attributes
	Setting the return service timeout period
	Disabling return service blocking manually
	Establishing return service failure/recovery policies
	RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED
	DISABLE RETURN
	RESUME RETURN
	DURABLE COMMIT
	LOCAL COMMIT ACTION

	Compressing replicated traffic
	Port assignments
	Setting the log failure threshold

	Configuring network operations
	Using automatic client failover for an active standby pair
	Including or excluding database objects from replication
	Materialized views in an active standby pair
	Replicating sequences in an active standby pair

	4 Administering an Active Standby Pair Without Cache Groups
	Overview of master database states
	Duplicating a database
	Setting up an active standby pair with no cache groups
	Recovering from a failure of the active database
	Recovering when the standby database is ready
	When replication is return receipt or asynchronous
	When replication is return twosafe

	Recovering when the standby database is not ready
	Recover the active database
	Recover the standby database

	Failing back to the original nodes

	Recovering from a failure of the standby database
	Recovering from the failure of a subscriber database
	Reversing the roles of the active and standby databases
	Detection of dual active databases

	5 Administering an Active Standby Pair with Cache Groups
	Active standby pairs with cache groups
	Setting up an active standby pair with a read-only cache group
	Setting up an active standby pair with an AWT cache group
	Recovering from a failure of the active database
	Recovering when the standby database is ready
	When replication is return receipt or asynchronous
	When replication is return twosafe

	Recovering when the standby database is not ready
	Recover the active database
	Recover the standby database

	Failing back to the original nodes

	Recovering from a failure of the standby database
	Recovering from the failure of a subscriber database
	Reversing the roles of the active and standby databases
	Detection of dual active databases
	Using a disaster recovery subscriber in an active standby pair
	Requirements for using a disaster recovery subscriber with an active standby pair
	Rolling out a disaster recovery subscriber
	Switching over to the disaster recovery site
	Creating a new active standby pair after switching to the disaster recovery site
	Switching over to a single database

	Returning to the original configuration at the primary site

	6 Altering an Active Standby Pair
	Making DDL changes in an active standby pair
	Creating a new PL/SQL object in an existing active standby pair
	Restrictions on making DDL changes in an active standby pair
	Examples: Making DDL changes in an active standby pair

	Making other changes to an active standby pair
	Examples: Altering an active standby pair

	7 Using Oracle Clusterware to Manage Active Standby Pairs
	Overview
	Active standby configurations
	Required privileges
	Hardware and software requirements
	Restricted commands and SQL statements

	The cluster.oracle.ini file
	Configuring basic availability
	Configuring advanced availability
	Including cache groups in the active standby pair
	Including the active standby pair in a cache grid
	Implementing application failover
	Recovering from permanent failure of both master nodes
	Using the RepDDL attribute

	Creating and initializing a cluster
	Install Oracle Clusterware
	Install TimesTen on each host
	Register the TimesTen cluster information
	Start the TimesTen cluster agent
	Create and populate a TimesTen database on one host
	Create sys.odbc.ini files on other hosts
	Create a cluster.oracle.ini file
	Create the virtual IP addresses (optional)
	Create an active standby pair replication scheme
	Start the active standby pair
	Load cache groups
	Including more than one active standby pair in a cluster
	Configuring an Oracle database as a disaster recovery subscriber
	Configuring a read-only subscriber that is not managed by Oracle Clusterware

	Using Oracle Clusterware with a TimesTen cache grid
	Creating and initializing a cluster of cache grid members
	Failure and recovery for active standby pair grid members
	Making schema changes to active standby pairs in a grid
	Add a cache group
	Drop a cache group
	Change an existing cache group

	Recovering from failures
	How TimesTen performs recovery when Oracle Clusterware is configured
	When an active database or its host fails
	When a standby database or its host fails
	When read-only subscribers or their hosts fail
	When failures occur on both master nodes
	Automatic recovery when not attached to a grid
	Manual recovery of both nodes of an active standby pair grid member
	Manual recovery for advanced availability
	Manual recovery for basic availability
	Manual recovery to the same master nodes when databases are corrupt
	Manual recovery when RETURN TWOSAFE is configured

	When more than two master hosts fail
	Performing a forced switchover after failure of the active database or host

	Planned maintenance
	Changing the schema
	Performing a rolling upgrade of Oracle Clusterware software
	Upgrading TimesTen
	Adding a read-only subscriber to an active standby pair
	Removing a read-only subscriber from an active standby pair
	Adding an active standby pair to a cluster
	Adding a read-only subscriber not managed by Oracle Clusterware
	Rebuilding a read-only subscriber not managed by Oracle Clusterware
	Removing an active standby pair from a cluster
	Adding a host to the cluster
	Removing a host from the cluster
	Reversing the roles of the master databases
	Moving a database to a different host
	Performing host or network maintenance
	Performing maintenance on the entire cluster
	Changing user names or passwords

	Monitoring cluster status
	Obtaining cluster status
	Message log files

	8 TimesTen Configuration Attributes for Oracle Clusterware
	List of attributes

	9 Defining Replication Schemes
	Designing a highly available system
	Considering failover and recovery scenarios
	Making decisions about performance and recovery tradeoffs
	Distributing workloads

	Defining a replication scheme
	Owner of the replication scheme and replicated objects
	Database names

	Table requirements and restrictions for replication schemes
	Defining replication elements
	Defining the DATASTORE element
	Defining table elements
	Replicating tables with foreign key relationships
	Replicating sequences
	Views and materialized views in a replicated database

	Checking for replication conflicts on table elements
	Setting transmit durability on data store elements
	Using a return service
	RETURN RECEIPT
	RETURN RECEIPT BY REQUEST
	RETURN TWOSAFE BY REQUEST
	RETURN TWOSAFE
	NO RETURN

	Setting STORE attributes
	Setting the return service timeout period
	Managing return service timeout errors and replication state changes
	When to manually disable return service blocking
	Establishing return service failure/recovery policies
	RETURN SERVICES {ON | OFF} WHEN REPLICATION STOPPED
	DISABLE RETURN
	RESUME RETURN
	DURABLE COMMIT
	LOCAL COMMIT ACTION

	Compressing replicated traffic
	Port assignments
	Setting the log failure threshold
	Replicating tables with different definitions

	Configuring network operations
	Replication scheme syntax examples
	Single subscriber schemes
	Multiple subscriber schemes with return services and a log failure threshold
	Replicating tables to different subscribers
	Propagation scheme
	Bidirectional split workload schemes
	Bidirectional distributed workload scheme

	Creating replication schemes with scripts

	10 Setting Up a Replicated System
	Configuring the network
	Network bandwidth requirements
	Replication in a WAN environment
	Configuring host IP addresses
	Identifying database hosts and network interfaces using the ROUTE clause
	Identifying database hosts on UNIX without using the ROUTE clause
	Host name resolution on Windows
	User-specified addresses for TimesTen daemons and subdaemons

	Identifying the local host of a replicated database

	Setting up the replication environment
	Establishing the databases
	Connection attributes for replicated databases
	Configuring parallel replication
	Configuring automatic parallel replication
	Configuring user-defined parallel replication for other replication schemes
	Restrictions on user-defined parallel replication

	Managing the transaction log on a replicated database
	About log buffer flushing
	About transaction log growth on a master database
	Setting connection attributes for logging

	Applying a replication scheme to a database
	Duplicating a master database to a subscriber
	Configuring a large number of subscribers
	Replicating databases across releases
	Starting and stopping the replication agents
	Setting the replication state of subscribers

	11 Managing Database Failover and Recovery
	Overview of database failover and recovery
	General failover and recovery procedures
	Subscriber failures
	Master failures
	Automatic catch-up of a failed master database
	When master catch-up is required for an active standby pair

	Failures in bidirectional distributed workload schemes
	Network failures
	Failures involving sequences

	Recovering a failed database
	Recovering a failed database from the command line
	Recovering a failed database from a C program

	Recovering nondurable databases
	Writing a failure recovery script

	12 Monitoring Replication
	Show state of replication agents
	Using ttStatus to obtain replication agent status
	Using ttAdmin -query to confirm policy settings
	Using ttDataStoreStatus to obtain replication agent status

	Show master database information
	Using ttRepAdmin to display information about the master database
	Querying replication tables to obtain information about a master database

	Show subscriber database information
	Using ttRepAdmin to display subscriber status
	Using ttReplicationStatus to display subscriber status
	Querying replication tables to display information about subscribers

	Show the configuration of replicated databases
	Using the ttIsql repschemes command to display configuration information
	Using ttRepAdmin to display configuration information
	Querying replication tables to display configuration information

	Show replicated log records
	Using ttRepAdmin to display bookmark location
	Using ttBookMark to display bookmark location

	Using ttRepAdmin to show replication status
	MAIN thread status fields
	Replication peer status fields
	TRANSMITTER thread status fields
	RECEIVER thread status fields

	Checking the status of return service transactions
	Improving replication performance

	13 Altering Replication
	Altering a replication scheme
	Adding a table or sequence to an existing replication scheme
	Adding a PL/SQL object to an existing replication scheme
	Adding a DATASTORE element to an existing replication scheme
	Including tables or sequences when you add a DATASTORE element
	Excluding a table or sequence when you add a DATASTORE element

	Dropping a table or sequence from a replication scheme
	Dropping a table or sequence that is replicated as part of a DATASTORE element
	Dropping a table or sequence that is replicated as a TABLE or SEQUENCE element

	Creating and adding a subscriber database
	Dropping a subscriber database
	Changing a TABLE or SEQUENCE element name
	Replacing a master database
	Eliminating conflict detection
	Eliminating the return receipt service
	Changing the port number
	Changing the replication route
	Changing the log failure threshold

	Altering a replicated table
	Truncating a replicated table
	Dropping a replication scheme

	14 Resolving Replication Conflicts
	How replication conflicts occur
	Update and insert conflicts
	Delete/update conflicts

	Using a timestamp to resolve conflicts
	Timestamp comparisons for local updates

	Configuring timestamp comparison
	Including a timestamp column in replicated tables
	Configuring the CHECK CONFLICTS clause
	Enabling system timestamp column maintenance
	Enabling user timestamp column maintenance

	Reporting conflicts
	Reporting conflicts to a text file
	Reporting conflicts to an XML file
	Reporting uniqueness conflicts
	Reporting update conflicts
	Reporting delete/update conflicts
	Suspending and resuming the reporting of conflicts

	The conflict report XML Document Type Definition
	The main body of the document
	The uniqueness conflict element
	The update conflict element
	The delete/update conflict element

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

