

Oracle® In-Memory Database Cache
User's Guide

11g Release 2 (11.2.2)
E21634-05

September 2012

Oracle In-Memory Database Cache User's Guide, 11g Release 2 (11.2.2)

E21634-05

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Related documents.. ix
Conventions ... ix
Documentation Accessibility ... xi

What's New.. xiii

New features in Release 11.2.2.4.0 .. xiii
New features in Release 11.2.2.2.0 .. xiii
New features in Release 11.2.2.1.0 .. xiii
New features in Release 11.2.2.0.0 .. xiv

1 Oracle In-Memory Database Cache Concepts

Overview of a cache grid... 1-1
Overview of cache groups .. 1-2

Cache instance .. 1-3
Cache group types ... 1-4
Transmitting updates between the TimesTen and Oracle databases ... 1-5
Loading data into a cache group: Explicitly loaded and dynamic cache groups 1-6
Sharing data across a cache grid: Local and global cache groups .. 1-7
Summary of cache group types.. 1-7

High availability caching solution.. 1-8

2 Getting Started

Setting up the Oracle and TimesTen systems .. 2-1
Create users in the Oracle database... 2-1
Create a DSN for the TimesTen database ... 2-3
Create users in the TimesTen database... 2-3
Set the cache administration user name and password in the TimesTen database 2-4

Creating a cache grid.. 2-5
Creating cache groups ... 2-5

Create the Oracle tables to be cached.. 2-6
Start the cache agent .. 2-7
Create the cache groups .. 2-8
Start the replication agent for the AWT cache group ... 2-9

iv

Attaching the TimesTen database to the cache grid .. 2-9
Performing operations on the read-only cache group.. 2-10

Manually load the cache group... 2-10
Update the cached Oracle table... 2-11

Performing operations on the dynamic updatable global cache group...................................... 2-11
Dynamically load the cache group ... 2-12
Update the TimesTen cache table ... 2-12

Cleaning up the TimesTen and Oracle systems.. 2-13
Detach the TimesTen database from the cache grid .. 2-13
Stop the replication agent .. 2-14
Drop the cache groups.. 2-14
Destroy the cache grid .. 2-14
Stop the cache agent and destroy the TimesTen database.. 2-14
Drop the Oracle users and their objects... 2-15

Procedure for caching Oracle data in TimesTen ... 2-16

3 Setting Up a Caching Infrastructure

Configuring your system to cache Oracle data in TimesTen... 3-1
Oracle In-Memory Database Cache environment variables for UNIX 3-1
Oracle In-Memory Database Cache environment variables for Microsoft Windows.............. 3-2

Configuring the Oracle database to cache data in TimesTen .. 3-2
Create the Oracle users.. 3-2
Grant privileges to the Oracle users .. 3-3
Automatically create Oracle objects used to manage caching of Oracle data........................... 3-9
Manually create Oracle objects used to manage caching of Oracle data 3-10

Configuring a TimesTen database to cache Oracle data ... 3-11
Define a DSN for the TimesTen database.. 3-11
Create the TimesTen users... 3-12
Grant privileges to the TimesTen users ... 3-13
Set the cache administration user name and password .. 3-14

Configuring a cache grid.. 3-14
Modify the PROCESSES Oracle system parameter for ten or more grid nodes 3-15
Create a cache grid .. 3-16
Associate a TimesTen database with a cache grid ... 3-16

Testing the connectivity between the TimesTen and Oracle databases 3-17
Managing the cache agent ... 3-17

Set a cache agent start policy ... 3-18

4 Defining Cache Groups

Cache groups and cache tables .. 4-1
Single-table cache group ... 4-3
Multiple-table cache group... 4-3

Creating a cache group .. 4-6
Read-only cache group.. 4-7

Restrictions with read-only cache groups ... 4-9
Asynchronous writethrough (AWT) cache group ... 4-10

Managing the replication agent ... 4-11

v

Configuring parallel propagation to Oracle tables ... 4-13
What an AWT cache group does and does not guarantee... 4-15
Restrictions with AWT cache groups.. 4-16
Reporting Oracle execution errors for AWT cache groups.. 4-17

Synchronous writethrough (SWT) cache group ... 4-17
Restrictions with SWT cache groups... 4-19

User managed cache group ... 4-19
PROPAGATE cache table attribute ... 4-24
READONLY cache table attribute ... 4-25

AUTOREFRESH cache group attribute ... 4-25
Altering a cache group to change the AUTOREFRESH mode, interval or state 4-27
Manually creating Oracle objects for autorefresh cache groups....................................... 4-28

Using a WHERE clause .. 4-29
Proper placement of WHERE clause in a CREATE CACHE GROUP statement 4-30
Referencing Oracle PL/SQL functions in a WHERE clause.. 4-31

ON DELETE CASCADE cache table attribute.. 4-32
UNIQUE HASH ON cache table attribute .. 4-33

Caching Oracle synonyms ... 4-33
Caching Oracle LOB data... 4-33
Implementing aging in a cache group ... 4-35

LRU aging... 4-35
Time-based aging .. 4-37
Manually scheduling an aging process.. 4-39
Configuring a sliding window.. 4-39

Dynamic cache groups.. 4-40
Global cache groups.. 4-41

Dynamic global cache groups ... 4-42
Explicitly loaded global cache groups ... 4-44
Start the replication agent .. 4-45
Attach a TimesTen database to a cache grid ... 4-45

5 Cache Group Operations

Transmitting updates between the TimesTen and Oracle databases .. 5-1
Loading and refreshing a cache group ... 5-2

Loading and refreshing an explicitly loaded cache group with autorefresh 5-4
Loading and refreshing a dynamic cache group with autorefresh... 5-4
Loading and refreshing a cache group using a WITH ID clause .. 5-5
Initiating an immediate autorefresh.. 5-6
Loading and refreshing a multiple-table cache group ... 5-6
Improving the performance of loading or refreshing a large number of cache instances 5-7
Example of manually loading and refreshing an explicitly loaded cache group 5-7
Example of manually loading and refreshing a dynamic cache group 5-8

Dynamically loading a cache instance .. 5-10
Dynamic load configuration.. 5-10
Dynamic load guidelines ... 5-11
Examples of dynamically loading a cache instance ... 5-13
Return dynamic load errors... 5-16

vi

Flushing a user managed cache group .. 5-16
Unloading a cache group ... 5-17

Unloading a cache group across all grid members .. 5-17
Determining the number of cache instances affected by an operation 5-18
Setting a passthrough level ... 5-18

PassThrough=0.. 5-18
PassThrough=1.. 5-19
PassThrough=2.. 5-20
PassThrough=3.. 5-21
PassThrough=4.. 5-22
PassThrough=5.. 5-23
Considerations for using passthrough... 5-24
Changing the passthrough level for a connection or transaction .. 5-25

Cache performance.. 5-25
Dynamic load performance ... 5-25
Improving AWT throughput... 5-25

6 Creating Other Cache Grid Members

Creating and configuring a subsequent standalone TimesTen database 6-1
Replicating cache tables .. 6-3

Create and configure the active database... 6-3
Create and configure the standby database ... 6-5
Create and configure the read-only subscriber database... 6-7

Example of data sharing among the grid members ... 6-7
Performing global queries on a cache grid.. 6-8

Performing global queries with local joins... 6-9
Obtaining information about the location of data in the cache grid 6-10

Adding other elements to a cache grid or grid member .. 6-12

7 Managing a Caching Environment

Checking the status of the cache and replication agents .. 7-1
Cache agent and replication connections ... 7-3

Monitoring cache groups and cache grids ... 7-3
Using the ttIsql utility's cachegroups command ... 7-3
Monitoring autorefresh operations on cache groups.. 7-5
Monitoring AWT cache groups.. 7-5
Configuring a transaction log file threshold for AWT cache groups ... 7-5
Obtaining information for a cache grid .. 7-5
Suspending global AWT cache group operations... 7-6
Tracking DDL statements issued on cached Oracle tables .. 7-6

Managing a caching environment with Oracle objects ... 7-8
Impact of failed autorefresh operations on TimesTen databases.. 7-11
Dropping Oracle objects used by autorefresh cache groups .. 7-14
Monitoring the cache administration user's tablespace .. 7-15

Receiving notification on tablespace usage... 7-15
Recovering from a full tablespace... 7-16

Recovering after failure of a grid node ... 7-17

vii

Backing up and restoring a database with cache groups... 7-18

8 Cleaning up the Caching Environment

Detaching a TimesTen database from a cache grid ... 8-1
Stopping the replication agent .. 8-2
Dropping a cache group .. 8-2
Destroying a cache grid ... 8-4
Stopping the cache agent .. 8-4
Destroying the TimesTen databases .. 8-4
Dropping the Oracle users and objects .. 8-5

9 Using the Cache Advisor

Cache Advisor overview ... 9-1
Setting up the Oracle and TimesTen host systems.. 9-3

Configure the target Oracle database and host system .. 9-3
Configure the repository Oracle database and host system .. 9-6
Configure the TimesTen database and host system ... 9-8
Cache Advisor configuration options and usage guidelines.. 9-10

Supported configuration options for hosts and databases .. 9-10
Restrictions and assumptions ... 9-10

Running a SQL workload application .. 9-11
Running the Cache Advisor .. 9-11
Viewing the Cache Advisor reports... 9-13
Cleaning up the Oracle and TimesTen databases and host systems .. 9-20

Clean up the target Oracle database and host system... 9-20
Clean up the repository Oracle database and host system ... 9-21
Clean up the TimesTen database and host system .. 9-21

10 Using Oracle In-Memory Database Cache in an Oracle RAC Environment

How IMDB Cache works in an Oracle RAC environment ... 10-1
Restrictions on using IMDB Cache in an Oracle RAC environment .. 10-4
Setting up IMDB Cache in an Oracle RAC environment.. 10-4

11 Using Oracle In-Memory Database Cache with Data Guard

Components of MAA for Oracle In-Memory Database Cache .. 11-1
How IMDB Cache works with Data Guard ... 11-2

Configuring the Oracle databases .. 11-2
Configuring the TimesTen database .. 11-4

12 SQL*Plus Scripts for Oracle In-Memory Database Cache

Installed SQL*Plus scripts... 12-1

13 Compatibility Between TimesTen and Oracle

Summary of compatibility issues... 13-1

viii

Transaction semantics .. 13-1
API compatibility .. 13-2
SQL compatibility ... 13-2

Schema objects ... 13-2
Caching and Oracle partitioned tables ... 13-3

Nonschema objects.. 13-3
Differences between Oracle and TimesTen tables.. 13-3
Data type support ... 13-3
SQL operators .. 13-4
SELECT statements ... 13-5
SQL subqueries.. 13-5
SQL functions .. 13-5
SQL expressions .. 13-7
INSERT/DELETE/UPDATE/MERGE statements.. 13-7
TimesTen-only SQL and built-in procedures.. 13-8
PL/SQL constructs.. 13-8

Mappings between Oracle and TimesTen data types .. 13-8

Glossary

Index

ix

Preface

Oracle In-Memory Database Cache is an Oracle Database product option that is ideal
for caching performance-critical subsets of an Oracle database into cache tables within
TimesTen databases for improved response time in the application tier. Cache tables
can be read-only or updatable. Applications read and update the cache tables using
standard Structured Query Language (SQL) while data synchronization between the
TimesTen database and the Oracle database is performed automatically.

Oracle In-Memory Database Cache offers applications the full generality and
functionality of a relational database, the transparent maintenance of cache
consistency with the Oracle database, and the real-time performance of an in-memory
database.

Audience
This guide is for application developers who use and administer TimesTen, and for
system administrators who configure and manage TimesTen databases that cache data
from Oracle databases.

To work with this guide, you should understand how relational database systems
work. You should also have knowledge of SQL, and either Open Database
Connectivity (ODBC), Java Database Connectivity (JDBC), or Oracle Call Interface
(OCI).

Related documents
TimesTen documentation is available on the product distribution media and on the
Oracle Technology Network (OTN):

http://www.oracle.com/technetwork/products/timesten/documentation

Conventions
TimesTen supports multiple platforms. Unless otherwise indicated, the information in
this guide applies to all supported platforms. The term Windows refers to all
supported Windows platforms. The term UNIX applies to all supported UNIX and
Linux platforms. See "Platforms" in Oracle TimesTen In-Memory Database Release Notes
for specific platform versions supported by TimesTen.

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database
unless otherwise noted.

x

This document uses the following text conventions:

TimesTen documentation uses these variables to identify path, file and user names:

Convention Meaning

boldface Boldface type indicates graphical user interface elements
associated with an action, or terms defined in text.

italic Italic type indicates book titles, emphasis, or placeholder variables
for which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs,
code in examples, text that appears on the screen, or text that you
enter.

italic monospace Italic monospace type indicates a variable in a code example that
you must replace. For example:

Driver=TimesTen_install_dir/lib/libtten.so

Replace TimesTen_install_dir with the path of your
TimesTen installation directory.

[] Square brackets indicate that an item in a command line is
optional.

{ } Curly braces indicate that you must choose one of the items
separated by a vertical bar (|) in a command line.

| A vertical bar separates alternative arguments.

. . . An ellipsis (. . .) after an argument indicates that you may use
more than one argument on a single command line.

% The percent sign indicates the UNIX shell prompt.

The number (or pound) sign indicates the prompt for the UNIX
root user.

Convention Meaning

TimesTen_install_dir The path that represents the directory where the current release of
TimesTen is installed.

TTinstance The instance name for your specific installation of TimesTen. Each
installation of TimesTen must be identified at install time with a
unique alphanumeric instance name. This name appears in the
install path.

bits or bb Two digits, 32 or 64, that represent either the 32-bit or 64-bit
version of the operating system.

release or rr The first three parts in a release number, with or without dots.
The first three parts of a release number represent a major
TimesTen release. For example, 1122 or 11.2.2 represents
TimesTen 11g Release 2 (11.2.2).

jdk_version One or two digits that represent the major version number of the
Java Development Kit (JDK) release. For example, 5 represents
JDK 5.

DSN The data source name.

xi

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

xii

xiii

What's New

This section summarizes the new features of Oracle In-Memory Database Cache
release 11.2.2 that are documented in this guide and provides links to more
information.

New features in Release 11.2.2.4.0
■ New instructions have been added on how to backup and restore a TimesTen

database that contains one or more cache groups. For more details, see "Backing
up and restoring a database with cache groups" on page 7-18.

■ A new tool, the Cache Advisor, has been added to help determine whether the
performance of an existing Oracle Database application that runs a workload of
SQL statements can be improved when the application is used with a TimesTen
database. Cache Advisor analyzes application performance and generates
recommendations of TimesTen cache group definitions based on the SQL usage in
the Oracle Database application. For more information, see Chapter 9, "Using the
Cache Advisor".

New features in Release 11.2.2.2.0
■ You can configure parallel propagation of changes in AWT cache tables to the

corresponding Oracle tables using either the ReplicationParallelism or
CacheAwtParallelism data store attributes. See "Configuring parallel
propagation to Oracle tables" on page 4-13.

■ If you are using parallel propagation, any unique index, unique constraint, or
foreign key constraint on the columns of the cached Oracle tables must also be
created on the cached tables in the AWT cache group. See "Configuring parallel
propagation to Oracle tables" on page 4-13.

New features in Release 11.2.2.1.0
■ You can configure parallel propagation of changes in AWT cache tables to the

corresponding Oracle tables. See "Configuring parallel propagation to Oracle
tables" on page 4-13.

■ The default value for the cacheAWTMethod first connection attribute has
changed. See "Improving AWT throughput" on page 5-25.

xiv

New features in Release 11.2.2.0.0
■ You can obtain information about the grid node where a global query is being

executed. See "Obtaining information about the location of data in the cache grid"
on page 6-10.

■ You can perform a local join when executing a global query. See "Performing
global queries with local joins" on page 6-9.

1

Oracle In-Memory Database Cache Concepts 1-1

1Oracle In-Memory Database Cache Concepts

Oracle In-Memory Database Cache is an Oracle Database product option that includes
the Oracle TimesTen In-Memory Database. It is used as a database cache at the
application tier to cache Oracle data and reduce the workload on the Oracle database.
It also provides the connection and transfer of data between an Oracle database and a
TimesTen database, as well as facilitating the capture and processing of high-volume
event flows into a TimesTen database and subsequent transfer of data into an Oracle
database.

You can cache Oracle data in a TimesTen database by defining a cache grid and then
creating cache groups. A cache group in a TimesTen database can cache a single
Oracle table or a group of related Oracle tables.

This chapter includes the following topics:

■ Overview of a cache grid

■ Overview of cache groups

■ High availability caching solution

Overview of a cache grid
A cache grid is a set of distributed TimesTen in-memory databases that work together
to cache data from an Oracle database and guarantee cache coherence among the
TimesTen databases. A grid consists of one or more in-memory database grid
members that collectively manage the application data using the relational data model.
The members of a grid cache data from a single Oracle database. A grid member can
be either a standalone TimesTen database or an active standby pair.

A grid node is the database for a grid member. A node is one of the following:

■ A standalone TimesTen database

■ The active database in an active standby pair

■ The standby database in an active standby pair

Thus a grid member that is a standalone database consists of one node. A grid member
that is an active standby pair consists of two nodes.

Figure 1–1 shows a cache grid containing three members: two standalone TimesTen
databases and an active standby pair. The grid has four nodes: the two standalone
TimesTen databases, the active database and the standby database of the active
standby pair. The read-only subscriber database is not part of the cache grid because it
has no connectivity with the Oracle database. The read-only subscriber receives
replicated updates from the standby database.

Overview of cache groups

1-2 Oracle In-Memory Database Cache User's Guide

Figure 1–1 Cache grid with three grid members caching data from an Oracle database

In a cache grid, cached data is dynamically distributed across multiple grid members
without shared storage. This architecture enables the capacity of the cache grid to scale
based on the processing needs of the application. When the workload increases or
decreases, new grid members attach to the grid or existing grid members detach from
the grid. Attaching to or detaching from the grid are online operations that do not
interrupt operations on other grid members.

When requests are submitted to the grid members, the cache grid automatically
redistributes data based on application access patterns. The location of the data is
transparent to the application, but the cache grid redistributes data dynamically to
minimize access time. The cache grid automatically maintains cache coherence and
transactional consistency across the grid members. You can also configure the cache
grid to perform global queries without redistributing the data. See "Performing global
queries on a cache grid" on page 6-8.

TimesTen databases within a cache grid can contain explicitly loaded and dynamic
cache groups, as well as local and global cache groups of any cache group type that is
supported for the various cache group classifications and categories.

See "Cache group types" on page 1-4 for details about the different types of cache
groups.

See "Loading data into a cache group: Explicitly loaded and dynamic cache groups" on
page 1-6 for details about the differences between an explicitly loaded and a dynamic
cache group.

See "Sharing data across a cache grid: Local and global cache groups" on page 1-7 for
details about the differences between a local and a global cache group.

See "Configuring a cache grid" on page 3-14 for information about creating a cache
grid and associating a TimesTen database with a cache grid.

Overview of cache groups
Cache groups define the Oracle data to be cached in a TimesTen database. A cache
group can be defined to cache all or part of a single Oracle table, or a set of related
Oracle tables.

Standalone
database 1

Oracle
database

Standalone
database 2

Active
database

Active standby pair

Read-only
subscriber
database

TimesTen in-memory databases

Standby
database

Overview of cache groups

Oracle In-Memory Database Cache Concepts 1-3

Figure 1–2 shows the target_customers cache group that caches a subset of a
single Oracle table customer.

Figure 1–2 Single-table cache group

You can cache multiple Oracle tables in the same cache group by defining a root table
and one or more child tables. A cache group can contain only one root table.

In a cache group with multiple tables, each child table must reference the root table or
another child table in the same cache group using a foreign key constraint. Although
tables in a multiple-table cache group must be related to each other in the TimesTen
database through foreign key constraints, the corresponding tables do not necessarily
need to be related to each other in the Oracle database. The root table does not
reference any table with a foreign key constraint. See "Multiple-table cache group" on
page 4-3 for more details about the characteristics of a multiple-table cache group.

Cache instance
Data is loaded from an Oracle database into a cache group within a TimesTen
database in units called cache instances. A cache instance is defined as a single row in
the cache group's root table together with the set of related rows in the child tables.

Figure 1–3 shows three tables in the customer_orders cache group. The root table is
customer. orders and order_item are child tables. The cache instance identified
by the row with the value 122 in the cust_num primary key column of the customer
table includes:

Oracle Database

customer
addressnamecust_num

Cache group target_customers

TimesTen

122
342
663

Jim Johnston
Jane Stone
Mary J. Warren

231 Main, Needles CA 92363
4223 Cowper, Palo Alto CA 94302
673 State, Madison WI 53787

region

West
West
Midwest

customer

Overview of cache groups

1-4 Oracle In-Memory Database Cache User's Guide

■ The two rows with the value 122 in the cust_num column of the orders table
(whose value in the ord_num primary key column is 44325 or 65432), and

■ The three rows with the value 44325 or 65432 in the ord_num column of the
order_item table

Figure 1–3 Multiple-table cache group

Cache group types
The most commonly used types of cache groups are:

■ Read-only cache group

A read-only cache group enforces a caching behavior in which committed updates
on cached tables in the Oracle database are automatically refreshed to the cache
tables in the TimesTen database. Using a read-only cache group is suitable for
reference data that is heavily accessed by applications.

Oracle Database

customer (Root Table)

ord_num cust_num when_placed when_shipped

orders

ord_num prod_num quantity

order_item

Cache group customer_orders

TimesTen

122
122
663

44325
65432
76543

10/7/07
8/24/08
4/2/09

10/7/07
8/27/08
4/8/09

44325
44325
65432
76543 SD07 2

SD07
TR3A
FT094

1
5
1

Child
Tables

addressnamecust_num region

122
342
663

Jim Johnston
Jane Stone
Mary J. Warren

231 Main, Needles CA 92363
4223 Cowper, Palo Alto CA 94302
673 State, Madison WI 53787

West
West
Midwest

customer

orders

order_item

Data for all customers

Overview of cache groups

Oracle In-Memory Database Cache Concepts 1-5

See "Read-only cache group" on page 4-7 for details about read-only cache groups.

■ Asynchronous writethrough (AWT) cache group

An AWT cache group enforces a caching behavior in which committed updates on
cache tables in the TimesTen database are automatically propagated to the cached
tables in the Oracle database in asynchronous fashion. Using an AWT cache group
is suitable for high speed data capture and online transaction processing.

See "Asynchronous writethrough (AWT) cache group" on page 4-10 for details
about AWT cache groups.

Other types of cache groups include:

■ Synchronous writethrough (SWT) cache group

An SWT cache group enforces a caching behavior in which committed updates on
cache tables in the TimesTen database are automatically propagated to the cached
tables in the Oracle database in synchronous fashion.

See "Synchronous writethrough (SWT) cache group" on page 4-17 for details about
SWT cache groups.

■ User managed cache group

A user managed cache group defines customized caching behavior.

For example, you can define a cache group that does not use automatic refresh nor
automatic propagation where committed updates on the cache tables are manually
propagated or flushed to the cached Oracle tables.

You can also define a cache group that uses both automatic propagation in
synchronous fashion on every table and automatic refresh.

See "User managed cache group" on page 4-19 for details about user managed
cache groups.

Transmitting updates between the TimesTen and Oracle databases
Transmitting committed updates between the TimesTen cache tables and the cached
Oracle tables keeps these tables in the two databases synchronized.

As shown in Figure 1–4, propagate and flush are operations that transmit committed
updates on cache tables in the TimesTen database to the cached tables in the Oracle
database. Flush is a manual operation and propagate is an automatic operation.

Load, refresh and autorefresh are operations that transmit committed updates on
cached tables in the Oracle database to the cache tables in the TimesTen database.
Load and refresh are manual operations; autorefresh is an automatic operation.

See "Flushing a user managed cache group" on page 5-16 for information about the
FLUSH CACHE GROUP statement which can only be issued on a user managed cache
group.

See "Asynchronous writethrough (AWT) cache group" on page 4-10 and "Synchronous
writethrough (SWT) cache group" on page 4-17 for details about how a propagate
operation is processed on AWT and SWT cache groups, respectively.

See "Loading and refreshing a cache group" on page 5-2 for information about the
LOAD CACHE GROUP and REFRESH CACHE GROUP statements.

See "AUTOREFRESH cache group attribute" on page 4-25 for details about an
autorefresh operation.

Overview of cache groups

1-6 Oracle In-Memory Database Cache User's Guide

Figure 1–4 Transmitting committed updates between the TimesTen and Oracle
databases

Loading data into a cache group: Explicitly loaded and dynamic cache groups
Cache groups are categorized as either explicitly loaded or dynamic.

In an explicitly loaded cache group, cache instances are loaded manually into the
TimesTen cache tables from Oracle by using a load or refresh operation or
automatically by using an autorefresh operation. The cache tables are loaded before
operations such as queries are performed on the tables. An explicitly loaded cache
group is appropriate when the set of data to cache is static and can be predetermined
before applications begin performing operations on the cache tables. By default, cache
groups are explicitly loaded unless they are defined as dynamic.

In a dynamic cache group, cache instances are loaded into the TimesTen cache tables
on demand from Oracle using a dynamic load operation or manually using a load
operation. A manual refresh or an autorefresh operation on a dynamic cache group
can result in existing cache instances being updated or deleted, but committed updates
on Oracle data that are not being cached do not result in new cache instances being
loaded into its cache tables. A dynamic cache group is appropriate when the set of
data to cache is small and should not be preloaded from Oracle before applications
begin performing operations on the cache tables.

See "Transmitting updates between the TimesTen and Oracle databases" on page 1-5
for details about cache group load and refresh operations.

See "Loading and refreshing a cache group" on page 5-2 for more details about the
differences between performing a load and a refresh operation on an explicitly loaded
cache group and performing the same operations on a dynamic cache group.

See "Dynamically loading a cache instance" on page 5-10 for details about a dynamic
load operation.

Oracle Database

TimesTen

Flush

Propagate

Load
Refresh
Autorefresh

Cache Group

Overview of cache groups

Oracle In-Memory Database Cache Concepts 1-7

Any cache group type (read-only, AWT, SWT, user managed) can be defined as an
explicitly loaded cache group. All cache group types except a user managed cache
group that uses both the AUTOREFRESH cache group attribute and the PROPAGATE
cache table attribute can be defined as a dynamic cache group.

See "Dynamic cache groups" on page 4-40 for more information about dynamic cache
groups.

Sharing data across a cache grid: Local and global cache groups
In addition to being explicitly loaded or dynamic, cache groups are also classified as
either local or global.

In a local cache group, data in the cache tables is not shared across TimesTen
databases even if the databases are members of the same cache grid. Therefore, the
databases can have overlapping data because the cache instances are local to a specific
grid member. Committed updates on the TimesTen cache tables are propagated to the
cached Oracle tables without coordination with other grid members. Any cache group
type can be defined as a local cache group. A local cache group can be defined either
as explicitly loaded or dynamic. Using a local cache group is suitable for reference data
that is read frequently and can be present in all grid members and for disjoint data
that is logically partitioned for optimal concurrency and throughput. By default, cache
groups are local unless they are defined as global.

In a global cache group, data in its cache tables are shared across TimesTen databases
that are members of the same cache grid. Committed updates to the same data on
different grid members are propagated to Oracle in the order in which they were
issued within the grid to ensure read/write data consistency across the members of
the grid.

A dynamic AWT cache group and an explicitly loaded AWT cache group can be
defined as global cache groups. New cache instances are loaded into the cache tables
of a global cache group on demand. Queries on a dynamic AWT global cache group
can be satisfied by data from the local grid member on which the query is made, from
remote grid members or from the Oracle database. Queries on an explicitly loaded
AWT cache group can be satisfied by data from the local grid member or from remote
grid members.Using a global cache group is suitable for updatable data that can only
be accessed by or present in one grid member at a time in order to ensure that the data
is consistent among both the members of the grid and the Oracle database.

See "Global cache groups" on page 4-41 for information about creating and using a
global cache group.

Summary of cache group types
The table in Figure 1–5 summarizes the valid combinations of cache group types,
categories and classifications available to the user at cache group creation time. The
cache group categories determine how the data is loaded into the cache group. The
cache group classifications determine whether data in the cache group can be shared
across a cache grid.

You can create an explicitly loaded local cache group or a dynamic local cache group
of any cache group type. You can create a global cache group for a cache group whose
category and type is dynamic AWT or explicitly loaded AWT.

High availability caching solution

1-8 Oracle In-Memory Database Cache User's Guide

Figure 1–5 Summary of cache group types and categories

High availability caching solution
You can configure Oracle In-Memory Database Cache to achieve high availability of
cache tables, and facilitate failover and recovery while maintaining connectivity to the
Oracle database. A TimesTen database that is a participant in an active standby pair
replication scheme can provide high availability for cache tables in a read-only or an
AWT cache group.

An active standby pair provides for high availability of a TimesTen database. Multiple
grid members provide for high availability of a TimesTen cache grid. Oracle Real
Application Clusters (Oracle RAC) and Data Guard provides for high availability of an
Oracle database.

See "Replicating cache tables" on page 6-3 for information on configuring replication of
cache tables.

See "Using Oracle In-Memory Database Cache in an Oracle RAC Environment" on
page 10-1 for more information on Oracle In-Memory Database Cache and Oracle
RAC.

See "Using Oracle In-Memory Database Cache with Data Guard" on page 11-1 for
more information on Oracle In-Memory Database Cache and Data Guard.

Loading data into a cache group
Dynamic

Cache
group
type

Read-only

AWT

SWT

User managed

Global GlobalLocal Local

Sharing data across a cache grid

x

x

x

x

x

Explicitly loaded

x

x

x

x

x

2

Getting Started 2-1

2Getting Started

This chapter describes how to create a cache grid. To illustrate the creation and use of
cache groups, the chapter describes how to create an explicitly loaded read-only local
cache group, and a dynamic updatable global cache group. The chapter also describes
how to populate the cache tables, and how to observe the transfer of updates between
the cache tables in the TimesTen database and the cached tables in the Oracle
database.

This chapter includes the following topics:

■ Setting up the Oracle and TimesTen systems

■ Creating a cache grid

■ Creating cache groups

■ Attaching the TimesTen database to the cache grid

■ Performing operations on the read-only cache group

■ Performing operations on the dynamic updatable global cache group

■ Cleaning up the TimesTen and Oracle systems

■ Procedure for caching Oracle data in TimesTen

Setting up the Oracle and TimesTen systems
Before you can create a cache grid or a cache group, you must first install TimesTen
and then configure the Oracle and TimesTen systems. See Oracle TimesTen In-Memory
Database Installation Guide for information about installing TimesTen.

Complete the following tasks:

1. Create users in the Oracle database.

2. Create a DSN for the TimesTen database.

3. Create users in the TimesTen database.

4. Set the cache administration user name and password in the TimesTen database.

Create users in the Oracle database
Before you can use Oracle In-Memory Database Cache, you must create some Oracle
users:

■ A user timesten owns Oracle tables that store information about cache grids.

Setting up the Oracle and TimesTen systems

2-2 Oracle In-Memory Database Cache User's Guide

■ One or more schema users own the Oracle tables to be cached in a TimesTen
database. These may be existing users or new users.

■ A cache administration user creates and maintains Oracle objects that store
information used to manage cache grids and enforce predefined behaviors of
particular cache group types.

Start SQL*Plus on the Oracle system from an operating system shell or command
prompt, and connect to the Oracle database instance as the sys user:

% cd TimesTen_install_dir/oraclescripts
% sqlplus sys as sysdba
Enter password: password

Use SQL*Plus to create a default tablespace that will be used by both the timesten
user and the cache administration user. This tablespace should only be used to store
objects for Oracle In-Memory Database Cache and should not be shared with other
applications. Then run the SQL*Plus script
TimesTen_install_dir/oraclescripts/initCacheGlobalSchema.sql to
create the following elements:

■ The timesten user

■ The Oracle tables owned by the timesten user to store information about cache
grids

■ The TT_CACHE_ADMIN_ROLE role that defines privileges on these Oracle tables

Pass the default tablespace as an argument to the initCacheGlobalSchema.sql
script. In the following example, the name of the default tablespace is cachetblsp:

SQL> CREATE TABLESPACE cachetblsp DATAFILE 'datfttuser.dbf' SIZE 100M;
SQL> @initCacheGlobalSchema "cachetblsp"

Next use SQL*Plus to create a schema user. Grant this user the minimum set of
privileges required to create tables in the Oracle database to be cached in a TimesTen
database. In the following example, the schema user is oratt:

SQL> CREATE USER oratt IDENTIFIED BY oracle;
SQL> GRANT CREATE SESSION, RESOURCE TO oratt;

Then use SQL*Plus to perform the following operations:

■ Create a cache administration user.

■ Run the SQL*Plus script TimesTen_install_
dir/oraclescripts/grantCacheAdminPrivileges.sql to grant the cache
administration user the minimum set of privileges required to perform cache grid
and cache group operations.

Pass the cache administration user name as an argument to the
grantCacheAdminPrivileges.sql script. In the following example, the cache
administration user name is cacheuser and the name of its default tablespace is
cachetblsp:

SQL> CREATE USER cacheuser IDENTIFIED BY oracle

Note: See the comments in the
grantCacheAdminPrivileges.sql script for the required
privileges by the user who executes this script and the privileges that
this user grants to the cache administration user.

Setting up the Oracle and TimesTen systems

Getting Started 2-3

 2 DEFAULT TABLESPACE cachetblsp QUOTA UNLIMITED ON cachetblsp;
SQL> @grantCacheAdminPrivileges "cacheuser"
SQL> exit

The privileges that the cache administration user requires depend on the types of
cache groups you create and the operations that you perform on the cache groups.

See "Create the Oracle users" on page 3-2 for more information about the timesten
user, the schema users, and the cache administration user.

Create a DSN for the TimesTen database
In the following data source name (DSN) examples, the net service name of the Oracle
database instance is oracledb and its database character set is AL32UTF8. The
TimesTen database character set must match the Oracle database character set. You
can determine the Oracle database character set by executing the following query in
SQL*Plus as any user:

SQL> SELECT value FROM nls_database_parameters WHERE parameter='NLS_CHARACTERSET';

On UNIX, in the .odbc.ini file that resides in your home directory or the
TimesTen_install_dir/info/sys.odbc.ini file, create a TimesTen DSN
cachealone1 and set the following connection attributes:

[cachealone1]
DataStore=/users/OracleCache/alone1
PermSize=64
OracleNetServiceName=oracledb
DatabaseCharacterSet=AL32UTF8

On Windows, create a TimesTen user DSN or system DSN cachealone1 and set the
following connection attributes:

■ Data Store Path + Name: c:\temp\alone1

■ Permanent Data Size: 64

■ Oracle Net Service Name: oracledb

■ Database Character Set: AL32UTF8

Use the default settings for all the other connection attributes.

See "Define a DSN for the TimesTen database" on page 3-11 for more information
about defining a DSN for a TimesTen database that is used to cache data from an
Oracle database.

See "Managing TimesTen Databases" in Oracle TimesTen In-Memory Database Operations
Guide for more information about TimesTen DSNs.

Create users in the TimesTen database
In addition to the Oracle users, you must create some TimesTen users before you can
use Oracle In-Memory Database Cache:

■ A cache manager user performs cache grid and cache group operations. The
TimesTen cache manager user must have the same name as an Oracle user that
can access the cached Oracle tables. For example, the Oracle user must have

Note: The term "data store" is used interchangeably with "TimesTen
database".

Setting up the Oracle and TimesTen systems

2-4 Oracle In-Memory Database Cache User's Guide

privileges to select from and update the cached Oracle tables. The Oracle user can
be the cache administration user, a schema user, or some other existing user. The
password of the cache manager user can be different than the password of the
Oracle user with the same name.

The cache manager user creates and configures the cache grid and creates the
cache groups. It may perform operations such as loading or refreshing a cache
group although these operations can be performed by any TimesTen user that has
sufficient privileges. The cache manager user can also monitor various aspects of
the caching environment, such as the grid itself or asynchronous operations that
are performed on cache groups such as autorefresh.

■ One or more cache table users own the cache tables. You must create a TimesTen
cache table user with the same name as an Oracle schema user for each schema
user who owns or will own Oracle tables to be cached in the TimesTen database.
The password of a cache table user can be different than the password of the
Oracle schema user with the same name.

The owner and name of a TimesTen cache table is the same as the owner and
name of the corresponding cached Oracle table.

Start the ttIsql utility on the TimesTen system from an operating system shell or
command prompt as the instance administrator, and connect to the cachealone1
DSN to create the TimesTen database that will be used to cache data from an Oracle
database:

% ttIsql cachealone1

Use ttIsql to create a cache manager user. Grant this user the minimum set of
privileges required to create a cache grid and cache groups, and perform operations on
the cache groups. In the following example, the cache manager user name is
cacheuser, which is the same name as the Oracle cache administration user that was
created earlier:

Command> CREATE USER cacheuser IDENTIFIED BY timesten;
Command> GRANT CREATE SESSION, CACHE_MANAGER, CREATE ANY TABLE TO cacheuser;

Then use ttIsql to create a cache table user. In the following example, the cache table
user name is oratt, which is the same name as the Oracle schema user that was
created earlier:

Command> CREATE USER oratt IDENTIFIED BY timesten;
Command> exit

The privileges that the cache manager user requires depend on the types of cache
groups you create and the operations that you perform on the cache groups. See
"Create the TimesTen users" on page 3-12 for more information about the cache
manager user and the cache table users.

See "Managing Access Control" in Oracle TimesTen In-Memory Database Operations
Guide for more information about TimesTen users and privileges.

Set the cache administration user name and password in the TimesTen database
Start the ttIsql utility and connect to the cachealone1 DSN as the cache manager
user. In the connection string, specify the cache manager user name in the UID
connection attribute. (In this example, the TimesTen cache manager user name is the
same as the Oracle cache administration user name.) Specify the cache manager user's
password in the PWD connection attribute and the cache administration user's
password in the OraclePWD connection attribute within the connection string.

Creating cache groups

Getting Started 2-5

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"

Use ttIsql to call the ttCacheUidPwdSet built-in procedure to set the Oracle cache
administration user name and password:

Command> call ttCacheUidPwdSet('cacheuser','oracle');

The cache administration user name and password need to be set only once in a
TimesTen database. See "Set the cache administration user name and password" on
page 3-14 for information about how this setting is used by the TimesTen database.

Creating a cache grid
After you have created the Oracle users, the TimesTen database, and the TimesTen
users, and set the Oracle cache administration user name and password in the
TimesTen database, you need to create a cache grid to define a framework for
TimesTen databases that cache tables from an Oracle database.

As the cache manager user, use the ttIsql utility to call the ttGridCreate built-in
procedure to create a cache grid myGrid:

Command> call ttGridCreate('myGrid');

Then use ttIsql to call the ttGridNameSet built-in procedure to associate the
TimesTen database with the myGrid cache grid:

Command> call ttGridNameSet('myGrid');

See "Configuring a cache grid" on page 3-14 for more information about the contents
and functionality of a cache grid.

Creating cache groups
After you have created a cache grid and associated the TimesTen database with the
grid, you are ready to create cache groups. You create a read-only cache group as
shown in Figure 2–1. Then you create an asynchronous writethrough (AWT) cache
group as shown in Figure 2–2.

Figure 2–1 Single-table read-only cache group

Oracle Database
TimesTen

Cache Group

Cached
Oracle
Table

TimesTen
Cache
Table

Creating cache groups

2-6 Oracle In-Memory Database Cache User's Guide

Figure 2–2 Single-table writethrough cache group

Complete the following tasks to create a read-only cache group and an AWT cache
group:

1. Create the Oracle tables to be cached.

2. Start the cache agent.

3. Create the cache groups.

4. Start the replication agent for the AWT cache group.

Create the Oracle tables to be cached
Start SQL*Plus and connect to the Oracle database as the schema user:

% sqlplus oratt/oracle

Use SQL*Plus to create a table readtab as shown in Figure 2–3, and a table
writetab as shown in Figure 2–4:

SQL> CREATE TABLE readtab (keyval NUMBER NOT NULL PRIMARY KEY, str VARCHAR2(32));
SQL> CREATE TABLE writetab (pk NUMBER NOT NULL PRIMARY KEY, attr VARCHAR2(40));

Figure 2–3 Creating an Oracle table to be cached in a read-only cache group

Oracle Database
TimesTen

Cache Group

Cached
Oracle
Table

TimesTen
Cache
Table

Oracle Database

readtab

1 Hello
2 World

Subscriber Data Store

INSERT INTO readtab VALUES (1, 'Hello')
INSERT INTO readtab VALUES (2, 'World')

CREATE TABLE readtab

Creating cache groups

Getting Started 2-7

Figure 2–4 Creating an Oracle table to be cached in an AWT cache group

Then use SQL*Plus to insert some rows into the readtab and writetab tables, and
commit the changes:

SQL> INSERT INTO readtab VALUES (1, 'Hello');
SQL> INSERT INTO readtab VALUES (2, 'World');

SQL> INSERT INTO writetab VALUES (100, 'TimesTen');
SQL> INSERT INTO writetab VALUES (101, 'IMDB');
SQL> COMMIT;

Next use SQL*Plus to grant the SELECT privilege on the readtab table, and the
SELECT, INSERT, UPDATE and DELETE privileges on the writetab table to the cache
administration user:

SQL> GRANT SELECT ON readtab TO cacheuser;

SQL> GRANT SELECT ON writetab TO cacheuser;
SQL> GRANT INSERT ON writetab TO cacheuser;
SQL> GRANT UPDATE ON writetab TO cacheuser;
SQL> GRANT DELETE ON writetab TO cacheuser;

The SELECT privilege on the readtab table is required to create a read-only cache
group that caches this table and to perform autorefresh operations from the cached
Oracle table to the TimesTen cache table.

The SELECT privilege on the writetab table is required to create an AWT cache
group that caches this table. The INSERT, UPDATE and DELETE privileges on the
writetab table are required to perform writethrough operations from the TimesTen
cache table to the cached Oracle table.

See "Grant privileges to the Oracle users" on page 3-3 for more information about the
privileges required for the cache administration user to create and perform operations
on a read-only cache group and an AWT cache group.

Start the cache agent
As the cache manager user, use the ttIsql utility to call the ttCacheStart built-in
procedure to start the cache agent on the TimesTen database:

Oracle Database

writetab

100 TimesTen
101 IMDB

Subscriber Data Store

INSERT INTO writetab VALUES (100, 'TimesTen')
INSERT INTO writetab VALUES (101, 'IMDB')

CREATE TABLE writetab

Creating cache groups

2-8 Oracle In-Memory Database Cache User's Guide

Command> call ttCacheStart;

See "Managing the cache agent" on page 3-17 for more information about starting the
cache agent.

Create the cache groups
As the cache manager user, use the ttIsql utility to create a read-only cache group
readcache that caches the Oracle oratt.readtab table and a dynamic AWT global
cache group writecache that caches the Oracle oratt.writetab table:

Command> CREATE READONLY CACHE GROUP readcache
 > AUTOREFRESH INTERVAL 5 SECONDS
 > FROM oratt.readtab
 > (keyval NUMBER NOT NULL PRIMARY KEY, str VARCHAR2(32));

Command> CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH GLOBAL CACHE GROUP writecache
 > FROM oratt.writetab
 > (pk NUMBER NOT NULL PRIMARY KEY, attr VARCHAR2(40));

The cache groups readcache and writecache, and their respective cache tables
oratt.readtab and oratt.writetab, whose owners and names are identical to
the cached Oracle tables, are created in the TimesTen database. Figure 2–5 shows that
the writecache cache group caches the oratt.writetab table.

Figure 2–5 Creating an asynchronous writethrough cache group

Use the ttIsql cachegroups command to view the definition of the readcache
and writecache cache groups:

Command> cachegroups;

Cache Group CACHEUSER.READCACHE:

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: Paused
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined

Oracle Database
TimesTen

oratt.writetab writetab
writecache

CREATE READONLY
CACHE GROUP writecache...

100 TimesTen
101 IMDB

Attaching the TimesTen database to the cache grid

Getting Started 2-9

 Root Table: ORATT.READTAB
 Table Type: Read Only

Cache Group CACHEUSER.WRITECACHE:

 Cache Group Type: Asynchronous Writethrough global (Dynamic)
 Autorefresh: No
 Aging: LRU on

 Root Table: ORATT.WRITETAB
 Table Type: Propagate

2 cache groups found.

See "Read-only cache group" on page 4-7 for more information about read-only cache
groups.

See "Asynchronous writethrough (AWT) cache group" on page 4-10 for more
information about AWT cache groups.

See "Dynamic cache groups" on page 4-40 for more information about dynamic cache
groups.

See "Global cache groups" on page 4-41 for more information about global cache
groups.

Start the replication agent for the AWT cache group
As the cache manager user, use the ttIsql utility to call the ttRepStart built-in
procedure to start the replication agent on the TimesTen database:

Command> call ttRepStart;

The replication agent propagates committed updates on TimesTen cache tables in
AWT cache groups to the cached Oracle tables.

See "Managing the replication agent" on page 4-11 for more information about starting
the replication agent.

Attaching the TimesTen database to the cache grid
If you are creating a local cache group, you do not need to attach the TimesTen
database to the cache grid. Before you can perform operations on a global cache group
or on its cache tables, you must attach the TimesTen database to the cache grid that it
is associated with.

As the cache manager user, use the ttIsql utility to call the ttGridAttach built-in
procedure to attach the TimesTen database to the myGrid cache grid:

Command> call ttGridAttach(1,'alone1','mysys',5001);

In this example, alone1 is a name that is used to uniquely identify the grid member,
mysys is the host name of the TimesTen system, and 5001 is the TCP/IP port for the
cache agent.

Calling the ttGridAttach built-in procedure automatically starts the cache agent if it
is not already running.

Although the example in this chapter contains only one standalone TimesTen database
as the sole grid member, it can be extended to include additional grid members such
as active standby pairs and other standalone TimesTen databases. See Chapter 6,

Performing operations on the read-only cache group

2-10 Oracle In-Memory Database Cache User's Guide

"Creating Other Cache Grid Members", for details on how to create and add other
members to an existing cache grid, and how data in a global cache group is shared
among the grid members.

Performing operations on the read-only cache group
This section shows how to manually load the read-only cache group. Then it shows
the TimesTen cache table being automatically refreshed with committed updates on
the cached Oracle table.

Complete the following tasks to perform operations on the read-only cache group:

1. Manually load the cache group.

2. Update the cached Oracle table.

Manually load the cache group
As the cache manager user, use the ttIsql utility to load the contents of the Oracle
oratt.readtab table into the TimesTen oratt.readtab cache table in the
readcache cache group:

Command> LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;
2 cache instances affected.
Command> exit

Figure 2–6 shows that the Oracle data is loaded into the oratt.readtab cache table.

Figure 2–6 Loading a read-only cache group

Start the ttIsql utility and connect to the cachealone1 DSN as the instance
administrator. Use ttIsql to grant the SELECT privilege on the oratt.readtab
cache table to the cache manager user so that this user can issue a SELECT query on
this table.

% ttIsql cachealone1
Command> GRANT SELECT ON oratt.readtab TO cacheuser;
Command> exit

Start the ttIsql utility and connect to the cachealone1 DSN as the cache manager
user. Use ttIsql to query the contents of oratt.readtab cache table.

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> SELECT * FROM oratt.readtab;
< 1, Hello >
< 2, World >
2 rows found.

Oracle Database
TimesTen

oratt.readtab

1 Hello
2 World

1 Hello
2 World Load

Cache Group

readtab
readcache

Performing operations on the dynamic updatable global cache group

Getting Started 2-11

See "Loading and refreshing a cache group" on page 5-2 for more information about
manually loading a cache group.

Update the cached Oracle table
Use SQL*Plus, as the Oracle schema user, to insert a new row, delete an existing row,
and update an existing row in the Oracle readtab table, and commit the changes:

SQL> INSERT INTO readtab VALUES (3, 'Welcome');
SQL> DELETE FROM readtab WHERE keyval=2;
SQL> UPDATE readtab SET str='Hi' WHERE keyval=1;
SQL> COMMIT;

After 5 seconds, the oratt.readtab cache table in the readcache cache group is
automatically refreshed with the committed updates on the cached Oracle
oratt.readtab table as shown in Figure 2–7.

Figure 2–7 Automatically refresh the TimesTen cache table with Oracle updates

As the cache manager user, use the ttIsql utility to query the contents of the
oratt.readtab cache table after the readcache cache group has been
automatically refreshed with the committed updates on the cached Oracle table:

Command> SELECT * FROM oratt.readtab;
< 1, Hi >
< 3, Welcome >
2 rows found.
Command> exit

See "AUTOREFRESH cache group attribute" on page 4-25 for more information about
automatically refreshing cache groups.

Performing operations on the dynamic updatable global cache group
This section shows how to dynamically load the AWT cache group. Then it shows
committed updates on the TimesTen cache table being automatically propagated to
the cached Oracle table.

Complete the following tasks to perform operations on the AWT cache group:

1. Dynamically load the cache group.

Oracle Database
TimesTen

readtab

1 Hi
3 Welcome

1 Hi
3 Welcome

Automatic refresh

oratt.readtab

readcache

INSERT INTO readtab VALUES (3,'Welcome');
DELETE FROM readtab WHERE keyval=2;
UPDATE readtab SET str='Hi' WHERE keyval=1;

Performing operations on the dynamic updatable global cache group

2-12 Oracle In-Memory Database Cache User's Guide

2. Update the TimesTen cache table.

Dynamically load the cache group
Start the ttIsql utility and connect to the cachealone1 DSN as the instance
administrator. Use ttIsql to grant the SELECT privilege on the oratt.writetab
cache table to the cache manager user so that this user can issue a dynamic load
SELECT statement on this table.

% ttIsql cachealone1
Command> GRANT SELECT ON oratt.writetab TO cacheuser;
Command> exit

Start the ttIsql utility and connect to the cachealone1 DSN as the cache manager
user. Use ttIsql to load a cache instance on demand from the Oracle
oratt.writetab table to the TimesTen oratt.writetab cache table in the
writecache cache group.

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> SELECT * FROM oratt.writetab WHERE pk=100;
< 100, TimesTen >
1 row found.
Command> exit

In a dynamic cache group, a cache instance can be loaded into its cache tables on
demand with a dynamic load statement. A SELECT, UPDATE, DELETE or INSERT
statement issued on a TimesTen cache table that uniquely identifies a cache instance
results in the cache instance being automatically loaded from the cached Oracle table if
the data is not found in the cache table. A dynamically loaded cache instance consists
of a single row in the root table of the cache group, and all the related rows in the child
tables.

See "Dynamically loading a cache instance" on page 5-10 for more information about a
dynamic load operation.

Data can also be manually loaded into the cache tables of a dynamic cache group using
a LOAD CACHE GROUP statement.

Update the TimesTen cache table
Start the ttIsql utility and connect to the cachealone1 DSN as the instance
administrator. Use ttIsql to grant the INSERT, DELETE and UPDATE privileges on
the oratt.writetab cache table to the cache manager user so that this user can
perform updates on this table.

% ttIsql cachealone1
Command> GRANT INSERT ON oratt.writetab TO cacheuser;
Command> GRANT DELETE ON oratt.writetab TO cacheuser;
Command> GRANT UPDATE ON oratt.writetab TO cacheuser;
Command> exit

Start the ttIsql utility and connect to the cachealone1 DSN as the cache manager
user. Use ttIsql to insert a new row, delete an existing row, and update an existing
row in the oratt.writetab cache table, and commit the changes.

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> INSERT INTO oratt.writetab VALUES (102, 'Cache');
Command> DELETE FROM oratt.writetab WHERE pk=101;
Command> UPDATE oratt.writetab SET attr='Oracle' WHERE pk=100;
Command> COMMIT;

Cleaning up the TimesTen and Oracle systems

Getting Started 2-13

Command> exit

The committed updates on the oratt.writetab cache table in the writecache
cache group are automatically propagated to the Oracle oratt.writetab table as
shown in Figure 2–8.

Figure 2–8 Automatically propagate TimesTen cache table updates to Oracle

As the Oracle schema user, use SQL*Plus to query the contents of the writetab table:

SQL> SELECT * FROM writetab;

 PK ATTR
---------- -------------------------------
 100 Oracle
 102 Cache

SQL> exit

Cleaning up the TimesTen and Oracle systems
Complete the following tasks to restore the TimesTen and Oracle systems to their
original state prior to creating a cache grid and cache groups:

1. Detach the TimesTen database from the cache grid.

2. Stop the replication agent.

3. Drop the cache groups.

4. Destroy the cache grid.

5. Stop the cache agent and destroy the TimesTen database.

6. Drop the Oracle users and their objects.

Detach the TimesTen database from the cache grid
Start the ttIsql utility and connect to the cachealone1 DSN as the cache manager
user. Use ttIsql to call the ttGridDetach built-in procedure to detach the
TimesTen database from the myGrid cache grid.

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> call ttGridDetach;

Oracle DatabaseTimesTen

writetab

100 Oracle
102 Cache

(automatic propagate)

oratt.writetab

writecache

Writethrough

INSERT INTO oratt.writetab VALUES (102, 'Cache');
DELETE FROM oratt.writetab WHERE pk=101;
UPDATE oratt.writetab SET attr='Oracle' WHERE pk=100;

100 Oracle
102 Cache

Cleaning up the TimesTen and Oracle systems

2-14 Oracle In-Memory Database Cache User's Guide

See "Detaching a TimesTen database from a cache grid" on page 8-1 for information
about the effects of detaching a TimesTen database from a cache grid.

Stop the replication agent
As the cache manager user, use the ttIsql utility to call the ttRepStop built-in
procedure to stop the replication agent on the TimesTen database:

Command> call ttRepStop;
Command> exit

See "Managing the replication agent" on page 4-11 for more information about
stopping the replication agent.

Drop the cache groups
Start the ttIsql utility and connect to the cachealone1 DSN as the instance
administrator. Use ttIsql to grant the DROP ANY TABLE privilege to the cache
manager user so that this user can drop the underlying cache tables when dropping
the cache groups.

% ttIsql cachealone1
Command> GRANT DROP ANY TABLE TO cacheuser;
Command> exit

Start the ttIsql utility and connect to the cachealone1 DSN as the cache manager
user. Use ttIsql to drop the readcache read-only cache group and the
writecache AWT cache group.

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> DROP CACHE GROUP readcache;
Command> DROP CACHE GROUP writecache;

The cache groups readcache and writecache, and their respective cache tables
oratt.readtab and oratt.writetab are dropped from the TimesTen database.

See "Dropping a cache group" on page 8-2 for more information about dropping cache
groups.

Destroy the cache grid
As the cache manager user, use the ttIsql utility to call the ttGridDestroy built-in
procedure to destroy the myGrid cache grid:

Command> call ttGridDestroy('myGrid');

See "Destroying a cache grid" on page 8-4 for more information about destroying a
cache grid.

Stop the cache agent and destroy the TimesTen database
As the cache manager user, use the ttIsql utility to call the ttCacheStop built-in
procedure to stop the cache agent on the TimesTen database:

Command> call ttCacheStop;
Command> exit

See "Managing the cache agent" on page 3-17 for more information about stopping the
cache agent.

Cleaning up the TimesTen and Oracle systems

Getting Started 2-15

Then use the ttDestroy utility to connect to the cachealone1 DSN and destroy the
TimesTen database:

% ttDestroy cachealone1

Drop the Oracle users and their objects
Start SQL*Plus and connect to the Oracle database as the sys user. Use SQL*Plus to
drop the timesten user, the schema user oratt, and the cache administration user
cacheuser.

% sqlplus sys as sysdba
Enter password: password
SQL> DROP USER timesten CASCADE;
SQL> DROP USER oratt CASCADE;
SQL> DROP USER cacheuser CASCADE;

Specifying CASCADE in a DROP USER statement drops all objects such as tables and
triggers owned by the user before dropping the user itself.

Next use SQL*Plus to drop the TT_CACHE_ADMIN_ROLE role:

SQL> DROP ROLE TT_CACHE_ADMIN_ROLE;

Then use SQL*Plus to drop the default tablespace cachetblsp used by the
timesten user and cache administration user including the contents of the tablespace
and its data file:

SQL> DROP TABLESPACE cachetblsp INCLUDING CONTENTS AND DATAFILES;
SQL> exit

Procedure for caching Oracle data in TimesTen

2-16 Oracle In-Memory Database Cache User's Guide

Procedure for caching Oracle data in TimesTen
Table 2–1 Instructions for caching Oracle data in a TimesTen database

Task
number Task

1 Create the following users in the Oracle database:

■ timesten user

User is created by running the SQL*Plus script TimesTen_install_
dir/oraclescripts/initCacheGlobalSchema.sql as the sys user.

■ One or more schema users who own the cached Oracle tables (may be
existing users)

■ Cache administration user

A default tablespace must be created for the timesten user and the cache
administration user. The same tablespace can be designated for both users.

Execute CREATE USER statements as the sys user.

See "Create the Oracle users" on page 3-2 for more information about the Oracle
users.

Grant the cache administration user the privileges required to perform the cache
grid operations, create the desired types of cache groups, and perform operations
on the cache groups. Privileges are granted by running either the TimesTen_
install_dir/oraclescripts/grantCacheAdminPrivileges.sql or the
TimesTen_install_dir/oraclescripts/initCacheAdminSchema.sql
script as the sys user.

See "Automatically create Oracle objects used to manage caching of Oracle data"
on page 3-9 or "Manually create Oracle objects used to manage caching of Oracle
data" on page 3-10 to determine the appropriate script to run.

If you are manually creating the Oracle objects, you also need to run the
TimesTen_install_dir/oraclescripts/initCacheGridSchema.sql
script to create the Oracle tables used to store information about TimesTen
databases that are associated with a particular cache grid.

Some privileges cannot be granted until the cached Oracle tables have been
created. To grant these privileges, execute GRANT statements as the sys user.

See "Grant privileges to the Oracle users" on page 3-3 for more information about
the privileges that must be granted to the cache administration user to perform
particular cache operations.

2 Define a DSN that references the TimesTen database that will be used to cache
data from an Oracle database.

Set the OracleNetServiceName connection attribute to the Oracle net service
name that references the Oracle database instance.

Set the DatabaseCharacterSet connection attribute to the Oracle database
character set. The TimesTen database character set must match the Oracle
database character set.

Then connect to the DSN to create the database if this is a standalone database or
will be an active database of an active standby pair.

See "Define a DSN for the TimesTen database" on page 3-11 for more information
about defining a DSN for a TimesTen database that will be used to cache data
from an Oracle database.

Procedure for caching Oracle data in TimesTen

Getting Started 2-17

3 Create the following users in the TimesTen database:

■ Cache manager user

This user must have the same name as an Oracle user that can access the
cached Oracle tables. The Oracle user can be the cache administration user, a
schema user, or some other existing user. The password of the cache manager
user and the Oracle user with the same name can be different.

■ One or more cache table users who own the TimesTen cache tables

These users must have the same name as the Oracle schema users who own
the cached Oracle tables. The password of a cache table user and the Oracle
user with the same name can be different.

Execute CREATE USER statements as the instance administrator.

See "Create the TimesTen users" on page 3-12 for more information about the
TimesTen users.

Grant the cache manager user the privileges required to perform the cache grid
operations, create the desired types of cache groups, and perform operations on
the cache groups. Execute GRANT statements as the instance administrator.

See "Grant privileges to the TimesTen users" on page 3-13 for more information
about the privileges that must be granted to the cache manager user to perform
particular cache operations.

4 Set the cache administration user name and password in the TimesTen database
either by calling the ttCacheUidPwdSet built-in procedure as the cache
manager user or running a ttAdmin -cacheUidPwdSet utility command as a
TimesTen external user with the CACHE_MANAGER privilege.

See "Set the cache administration user name and password" on page 3-14 for more
information about setting the cache administration user name and password in a
TimesTen database.

5 Create a cache grid by calling the ttGridCreate built-in procedure in the
TimesTen database as the cache manager user.

See "Create a cache grid" on page 3-16 for more information about creating a cache
grid.

6 Associate the TimesTen database with the cache grid by calling the
ttGridNameSet built-in procedure in the TimesTen database as the cache
manager user.

See "Associate a TimesTen database with a cache grid" on page 3-16 for more
information about associating a TimesTen database with a cache grid.

7 Start the cache agent on the TimesTen database either by calling the
ttCacheStart built-in procedure as the cache manager user or running a
ttAdmin -cacheStart utility command as a TimesTen external user with the
CACHE_MANAGER privilege.

See "Managing the cache agent" on page 3-17 for more information about starting
a cache agent on a TimesTen database.

Table 2–1 (Cont.) Instructions for caching Oracle data in a TimesTen database

Task
number Task

Procedure for caching Oracle data in TimesTen

2-18 Oracle In-Memory Database Cache User's Guide

8 Design the schema for the cache groups by determining which Oracle tables to
cache and within those tables, which columns and rows to cache. For multiple
table cache groups, determine the relationship between the tables by defining
which table is the root table, which tables are direct child tables of the root table,
and which tables are the child tables of other child tables. For each cached column,
determine the TimesTen data type to which the Oracle data type should be
mapped.

See "Mappings between Oracle and TimesTen data types" on page 13-8 for a list of
valid data type mappings between the Oracle and TimesTen databases.

For each cache group, determine what type to create (read-only, SWT, AWT, user
managed) based on the application requirements and objectives. Also, determine
whether each cache group will be explicitly loaded or dynamic, and local or
global.

Then create the cache groups.

See "Creating a cache group" on page 4-6 for more information about creating a
cache group.

9 If this TimesTen database is intended to be an active database of an active standby
pair, create an active standby pair replication scheme in the database.

10 If the TimesTen database contains an active standby pair replication scheme or at
least one AWT cache group, start the replication agent on the database either by
calling the ttRepStart built-in procedure as the cache manager user or running
a ttAdmin -repStart utility command as a TimesTen external user with the
CACHE_MANAGER privilege.

See "Managing the replication agent" on page 4-11 for more information about
starting a replication agent on a TimesTen database.

11 If the TimesTen database contains at least one global cache group, attach the
TimesTen database to the cache grid that the database associated with by calling
the ttGridAttach built-in procedure as the cache manager user.

See "Attach a TimesTen database to a cache grid" on page 4-45 for more
information about attaching a TimesTen database to a cache grid.

12 Manually load the cache tables in explicitly loaded cache groups using LOAD
CACHE GROUP statements, and load the cache tables in dynamic cache groups
using proper SELECT, UPDATE or INSERT statements.

See "Loading and refreshing a cache group" on page 5-2 for more information
about manually loading cache tables in a cache group.

See "Dynamically loading a cache instance" on page 5-10 for more information
about dynamically loading cache tables in a dynamic cache group.

13 Subsequent standalone TimesTen databases can be added as members to an
existing cache grid.

To create a standalone database, perform task 2. Then perform tasks 3 to 4, 6 to 8,
and 10 to 11 to configure the database and add it as a member to the grid.

See "Creating and configuring a subsequent standalone TimesTen database" on
page 6-1 for details about creating another standalone TimesTen database and
adding that database to an existing cache grid.

Table 2–1 (Cont.) Instructions for caching Oracle data in a TimesTen database

Task
number Task

Procedure for caching Oracle data in TimesTen

Getting Started 2-19

14 An active standby pair can be added as a member to an existing cache grid to
achieve high availability by replicating the cache tables to another TimesTen
database.

To create the active database perform task 2. Then perform tasks 3 to 4, and 6 to 11
to configure the database and add it as a member to the grid.

See "Create and configure the active database" on page 6-3 for details about
creating an active database and adding the database to an existing cache grid.

To create the standby database from the active database, perform task 2 to create a
DSN for the standby database, and then run a ttRepAdmin -duplicate utility
command on the standby database system as a TimesTen external user with the
ADMIN privilege. For the command to succeed, the cache manager user in the
active database must be granted the ADMIN privilege. Then perform tasks 4, 7, 10
and 11 to configure the database and add it as a member to the grid.

See "Create and configure the standby database" on page 6-5 for details about
creating a standby database and adding the database to an existing cache grid.

To create an optional read-only subscriber database from the standby database,
perform task 2 to create a DSN for the subscriber database. Then run a
ttRepAdmin -duplicate utility command on the subscriber database system
as a TimesTen external user with the ADMIN privilege. For the command to
succeed, the cache manager user in the standby database must be granted the
ADMIN privilege. Then perform task 10 to start the replication agent on the
database.

See "Create and configure the read-only subscriber database" on page 6-7 for
details about creating a read-only subscriber database for an active standby pair.

Table 2–1 (Cont.) Instructions for caching Oracle data in a TimesTen database

Task
number Task

Procedure for caching Oracle data in TimesTen

2-20 Oracle In-Memory Database Cache User's Guide

3

Setting Up a Caching Infrastructure 3-1

3Setting Up a Caching Infrastructure

This chapter describes the tasks for setting up the TimesTen and Oracle systems before
you can start caching Oracle data in a TimesTen database. It includes the following
topics:

■ Configuring your system to cache Oracle data in TimesTen

■ Configuring the Oracle database to cache data in TimesTen

■ Configuring a TimesTen database to cache Oracle data

■ Configuring a cache grid

■ Testing the connectivity between the TimesTen and Oracle databases

■ Managing the cache agent

Configuring your system to cache Oracle data in TimesTen
Oracle In-Memory Database Cache supports the following Oracle server releases:

■ Oracle 11g Release 2 (11.2.0.2.0 or above)

■ Oracle 11g Release 1 (11.1.0.7.0 or above)

■ Oracle 10g Release 2 (10.2.0.5.0 or above)

Configure the environment variables for your particular operating system, as
described in "Oracle In-Memory Database Cache environment variables for UNIX" on
page 3-1 or "Oracle In-Memory Database Cache environment variables for Microsoft
Windows" on page 3-2.

Then install TimesTen as described in Oracle TimesTen In-Memory Database Installation
Guide.

TimesTen does not support Oracle Name Server for Windows clients.

Oracle In-Memory Database Cache environment variables for UNIX
The shared library search path environment variable such as LD_LIBRARY_PATH or
SHLIB_PATH must include the TimesTen_install_dir/lib directory.

Note: From a product perspective, "Oracle In-Memory Database
Cache" is used interchangeably with "TimesTen" because the Oracle
In-Memory Database Cache product option includes the Oracle
TimesTen In-Memory Database.

Configuring the Oracle database to cache data in TimesTen

3-2 Oracle In-Memory Database Cache User's Guide

For more information, see "Shared library path environment variable" in Oracle
TimesTen In-Memory Database Installation Guide.

The PATH environment variable must include the TimesTen_install_dir/bin
directory.

In the following example, TimesTen is installed in the /timesten/myinstance
directory:

LD_LIBRARY_PATH=/timesten/myinstance/lib
PATH=/timesten/myinstance/bin

Oracle In-Memory Database Cache environment variables for Microsoft Windows
The PATH system environment variable must include the following directories:

■ Oracle_install_dir\bin

■ TimesTen_install_dir\lib

■ TimesTen_install_dir\bin

In the following example, Oracle is installed in the C:\oracle\ora112 directory and
TimesTen is installed in the C:\timesten\myinstance directory:

PATH=C:\oracle\ora112\bin;C:\timesten\myinstance\lib;C:\timesten\myinstance\bin

Configuring the Oracle database to cache data in TimesTen
This section describes the tasks that must be performed on the Oracle database by the
sys user. The topics include:

■ Create the Oracle users

■ Grant privileges to the Oracle users

■ Automatically create Oracle objects used to manage caching of Oracle data

■ Manually create Oracle objects used to manage caching of Oracle data

Create the Oracle users
First you must create a user timesten that will own Oracle tables that store
information about cache grids. The SQL*Plus script TimesTen_install_
dir/oraclescripts/initCacheGlobalSchema.sql is used to create:

■ The timesten user

■ The Oracle tables owned by the timesten user to store information about cache
grids

■ The TT_CACHE_ADMIN_ROLE role that defines privileges on these Oracle tables

Create or designate a default tablespace for the timesten user and pass this
tablespace as an argument to the initCacheGlobalSchema.sql script. See
"Managing a caching environment with Oracle objects" on page 7-8 for a list of Oracle
tables owned by the timesten user.

Example 3–1 Creating the timesten user and its tables

In the following SQL*Plus example, the default tablespace that is created for the
timesten user is cachetblsp:

% cd TimesTen_install_dir/oraclescripts

Configuring the Oracle database to cache data in TimesTen

Setting Up a Caching Infrastructure 3-3

% sqlplus sys as sysdba
Enter password: password
SQL> CREATE TABLESPACE cachetblsp DATAFILE 'datfttuser.dbf' SIZE 100M;
SQL> @initCacheGlobalSchema "cachetblsp"

Then you must create or designate one or more users that will own Oracle tables that
will be cached in a TimesTen database. We refer to these users as the schema users.
These may be existing users or new users. The tables to be cached may or may not
already exist.

Example 3–2 Creating a schema user

As the sys user, create a schema user oratt.

Use SQL*Plus to create the schema user:

SQL> CREATE USER oratt IDENTIFIED BY oracle;

Next you must create a user that will create, own and maintain Oracle objects that
store information used to manage a specific cache grid and enforce predefined
behaviors of particular cache group types. We refer to this user as the cache
administration user.

Designate the tablespace that was created for the timesten user as the default
tablespace for the cache administration user. This user will create tables in this
tablespace that are used to store information about the cache grid and its cache groups.
Other Oracle objects such change log tables, replication metadata tables, and triggers
that are used to enforce the predefined behaviors of autorefresh cache groups and
AWT cache groups are created in the same tablespace.

See "Managing a caching environment with Oracle objects" on page 7-8 for a list of
Oracle tables and triggers owned by the cache administration user.

Example 3–3 Creating the cache administration user

As the sys user, create a cache administration user cacheuser. In the following
example, the default tablespace for the cacheuser user is cachetblsp.

Use SQL*Plus to create the cache administration user:

SQL> CREATE USER cacheuser IDENTIFIED BY oracle
 2 DEFAULT TABLESPACE cachetblsp QUOTA UNLIMITED ON cachetblsp;

Grant privileges to the Oracle users
The privileges that the Oracle users require depends on the types of cache groups you
create and the operations that you perform on the cache groups. The privileges
required for the Oracle cache administration user and the TimesTen cache manager
user for each cache operation are listed in Table 3–1.

Note: An autorefresh cache group refers to a read-only cache group
or a user managed cache group that uses the AUTOREFRESH MODE
INCREMENTAL cache group attribute.

Configuring the Oracle database to cache data in TimesTen

3-4 Oracle In-Memory Database Cache User's Guide

Table 3–1 Oracle and TimesTen user privileges required for cache operations

Cache operation
Privileges required for Oracle
cache administration user1

Privileges required for TimesTen
cache manager user2

Initialize the cache administration
user. The
grantCacheAdminPrivileges.s
ql script grants these privileges to
the cache administration user.

CREATE SESSION

TT_CACHE_ADMIN_ROLE

EXECUTE ON SYS.DBMS_LOCK

RESOURCE

CREATE PROCEDURE

CREATE ANY TRIGGER

EXECUTE ON SYS.DBMS_LOB

SELECT ON SYS.ALL_OBJECTS

SELECT ON SYS.ALL_SYNONYMS

CREATE ANY TYPE

SELECT ON SYS.GV_$LOCK

SELECT ON SYS.GV_$SESSION

SELECT ON SYS.DBA_DATA_
FILES

SELECT ON SYS.USER_USERS

SELECT ON SYS.USER_FREE_
SPACE

SELECT ON SYS.USER_TS_
QUOTAS

SELECT ON SYS.USER_SYS_
PRIVS

Permissions for the default
tablespace

Set the cache administration user
name and password

■ Call the ttCacheUidPwdSet
built-in procedure

■ Run the ttAdmin
-cacheUidPwdSet utility
command

■ CREATE SESSION

■ RESOURCE3

CACHE_MANAGER

Get the cache administration user
name

■ Call the ttCacheUidGet
built-in procedure

■ Run the ttAdmin
-cacheUidGet utility
command

None CACHE_MANAGER

Create a cache grid

■ Call the ttGridCreate built-in
procedure

■ CREATE SESSION

■ TT_CACHE_ADMIN_ROLE role

■ RESOURCE3

CACHE_MANAGER

Associate a TimesTen database with
a cache grid

■ Call the ttGridNameSet
built-in procedure

■ CREATE SESSION

■ TT_CACHE_ADMIN_ROLE role

CACHE_MANAGER

Configuring the Oracle database to cache data in TimesTen

Setting Up a Caching Infrastructure 3-5

Attach a TimesTen database to a
cache grid

■ Call the ttGridAttach built-in
procedure

■ CREATE SESSION

■ TT_CACHE_ADMIN_ROLE role

CACHE_MANAGER

Detach a TimesTen database from a
cache grid

■ Call the ttGridDetach built-in
procedure

■ CREATE SESSION

■ TT_CACHE_ADMIN_ROLE role

CACHE_MANAGER

Detach a list of nodes from a cache
grid

■ Call the ttGridDetachList
built-in procedure

■ CREATE SESSION

■ TT_CACHE_ADMIN_ROLE role

CACHE_MANAGER

Destroy a cache grid

■ Call the ttGridDestroy
built-in procedure

■ CREATE SESSION

■ TT_CACHE_ADMIN_ROLE role

CACHE_MANAGER

Start the cache agent

■ Call the ttCacheStart built-in
procedure

■ Run the ttAdmin
-cacheStart utility command

CREATE SESSION CACHE_MANAGER

Stop the cache agent

■ Call the ttCacheStop built-in
procedure

■ Run the ttAdmin
-cacheStop utility command

None CACHE_MANAGER

Set a cache agent start policy

■ Call the ttCachePolicySet
built-in procedure

■ Run the ttAdmin
-cachePolicy utility
command

CREATE SESSION4 CACHE_MANAGER

Return the cache agent start policy
setting

■ Call the ttCachePolicyGet
built-in procedure

CREATE SESSION None

Start the replication agent

■ Call the ttRepStart built-in
procedure

■ Run the ttAdmin -repStart
utility command

None CACHE_MANAGER

Stop the replication agent

■ Call the ttRepStop built-in
procedure

■ Run the ttAdmin -repStop
utility command

None CACHE_MANAGER

Table 3–1 (Cont.) Oracle and TimesTen user privileges required for cache operations

Cache operation
Privileges required for Oracle
cache administration user1

Privileges required for TimesTen
cache manager user2

Configuring the Oracle database to cache data in TimesTen

3-6 Oracle In-Memory Database Cache User's Guide

Set a replication agent start policy

■ Call the ttRepPolicySet
built-in procedure

■ Run the ttAdmin
-repPolicy utility command

None ADMIN

CREATE [DYNAMIC] READONLY
CACHE GROUP with AUTOREFRESH
MODE INCREMENTAL

■ CREATE SESSION

■ SELECT ON table_name5

■ RESOURCE3

■ CREATE ANY TRIGGER3

■ CREATE [ANY] CACHE
GROUP6

■ CREATE [ANY] TABLE7

CREATE [DYNAMIC] READONLY
CACHE GROUP with AUTOREFRESH
MODE FULL

■ CREATE SESSION

■ SELECT ON table_name5

■ CREATE [ANY] CACHE
GROUP6

■ CREATE [ANY] TABLE7

CREATE [DYNAMIC]
ASYNCHRONOUS WRITETHROUGH
[GLOBAL] CACHE GROUP

■ CREATE SESSION

■ SELECT ON table_name5

■ RESOURCE3

■ CREATE [ANY] CACHE
GROUP6

■ CREATE [ANY] TABLE7

CREATE [DYNAMIC]
SYNCHRONOUS WRITETHROUGH
CACHE GROUP

■ CREATE SESSION

■ SELECT ON table_name5

■ CREATE [ANY] CACHE

GROUP6

■ CREATE [ANY] TABLE7

CREATE [DYNAMIC]
USERMANAGED CACHE GROUP

(see variants in following rows)

■ CREATE SESSION

■ SELECT ON table_name5

■ CREATE [ANY] CACHE

GROUP6

■ CREATE [ANY] TABLE7

CREATE [DYNAMIC]
USERMANAGED CACHE GROUP with
AUTOREFRESH MODE
INCREMENTAL

■ CREATE SESSION

■ SELECT ON table_name5

■ RESOURCE3

■ CREATE ANY TRIGGER3

■ CREATE [ANY] CACHE

GROUP6

■ CREATE [ANY] TABLE7

CREATE [DYNAMIC]
USERMANAGED CACHE GROUP with
AUTOREFRESH MODE FULL

■ CREATE SESSION

■ SELECT ON table_name5

■ CREATE [ANY] CACHE
GROUP6

■ CREATE [ANY] TABLE7

CREATE [DYNAMIC]
USERMANAGED CACHE GROUP with
READONLY

■ CREATE SESSION

■ SELECT ON table_name5

■ CREATE [ANY] CACHE
GROUP6

■ CREATE [ANY] TABLE7

CREATE [DYNAMIC]
USERMANAGED CACHE GROUP with
PROPAGATE

■ CREATE SESSION

■ SELECT ON table_name5

■ CREATE [ANY] CACHE
GROUP6

■ CREATE [ANY] TABLE7

ALTER CACHE GROUP SET
AUTOREFRESH STATE PAUSED

■ CREATE SESSION

■ SELECT ON table_name5,8

■ RESOURCE3,8

■ CREATE ANY TRIGGER3,8

ALTER ANY CACHE GROUP9

Table 3–1 (Cont.) Oracle and TimesTen user privileges required for cache operations

Cache operation
Privileges required for Oracle
cache administration user1

Privileges required for TimesTen
cache manager user2

Configuring the Oracle database to cache data in TimesTen

Setting Up a Caching Infrastructure 3-7

ALTER CACHE GROUP SET
AUTOREFRESH STATE ON

■ CREATE SESSION

■ SELECT ON table_name5,8

■ RESOURCE3,8

■ CREATE ANY TRIGGER3,8

ALTER ANY CACHE GROUP9

ALTER CACHE GROUP SET
AUTOREFRESH STATE OFF

CREATE SESSION ALTER ANY CACHE GROUP9

ALTER CACHE GROUP SET
AUTOREFRESH MODE FULL

CREATE SESSION ALTER ANY CACHE GROUP9

ALTER CACHE GROUP SET
AUTOREFRESH MODE
INCREMENTAL

■ CREATE SESSION

■ SELECT ON table_name5

■ RESOURCE3

■ CREATE ANY TRIGGER3

ALTER ANY CACHE GROUP9

ALTER CACHE GROUP SET
AUTOREFRESH INTERVAL

■ CREATE SESSION

■ SELECT ON table_name5,10

ALTER ANY CACHE GROUP9

LOAD CACHE GROUP ■ CREATE SESSION

■ SELECT ON table_name5

LOAD {ANY CACHE GROUP | ON
cache_group_name)9

REFRESH CACHE GROUP ■ CREATE SESSION

■ SELECT ON table_name5

REFRESH {ANY CACHE GROUP |

ON cache_group_name)9

FLUSH CACHE GROUP ■ CREATE SESSION

■ UPDATE ON table_name5

■ INSERT ON table_name5

FLUSH {ANY CACHE GROUP | ON
cache_group_name)9

UNLOAD CACHE GROUP None UNLOAD {ANY CACHE GROUP |
ON cache_group_name)9

DROP CACHE GROUP CREATE SESSION ■ DROP ANY CACHE GROUP9

■ DROP ANY TABLE11

Synchronous writethrough or
propagate

■ CREATE SESSION

■ INSERT ON table_name5,12

■ UPDATE ON table_name5,12

■ DELETE ON table_name5,12

■ INSERT ON table_name13

■ UPDATE ON table_name13

■ DELETE ON table_name13

Asynchronous writethrough ■ CREATE SESSION

■ INSERT ON table_name5

■ UPDATE ON table_name5

■ DELETE ON table_name5

■ INSERT ON table_name13

■ UPDATE ON table_name13

■ DELETE ON table_name13

Asynchronous writethrough when
the CacheAWTMethod connection
attribute is set to 1

CREATE PROCEDURE

Note: This privilege is an addition to
the privileges needed for any
asynchronous writethrough cache
group.

No additional privileges

Table 3–1 (Cont.) Oracle and TimesTen user privileges required for cache operations

Cache operation
Privileges required for Oracle
cache administration user1

Privileges required for TimesTen
cache manager user2

Configuring the Oracle database to cache data in TimesTen

3-8 Oracle In-Memory Database Cache User's Guide

Asynchronous writethrough cache
for Oracle CLOB, BLOB and NCLOB
fields when the CacheAWTMethod
connection attribute is set to 1

EXECUTE privilege on the Oracle
DBMS_LOB PL/SQL package

Note: This privilege is an addition to
the privileges needed for any
asynchronous writethrough cache
group.

No additional privileges

Incremental autorefresh SELECT ON table_name5 None

Full autorefresh SELECT ON table_name5 None

Dynamic load ■ CREATE SESSION

■ SELECT ON table_name5

■ SELECT ON table_name13

■ UPDATE ON table_name13

■ DELETE ON table_name13

■ INSERT ON table_name13

Aging None DELETE {ANY TABLE | ON
table_name)13

Set the LRU aging attributes

■ Call the ttAgingLRUConfig
built-in procedure

None ADMIN

Generate Oracle SQL statements to
manually install or uninstall Oracle
objects

■ Run the ttIsql utility's
cachesqlget command

■ Call the ttCacheSQLGet
built-in procedure

CREATE SESSION CACHE_MANAGER

Disable or enable propagation of
committed cache table updates to
Oracle

■ Call the
ttCachePropagateFlagSet
built-in procedure

None CACHE_MANAGER

Configure cache agent timeout and
recovery method for autorefresh
cache groups

■ Call the ttCacheConfig
built-in procedure

CREATE SESSION CACHE_MANAGER

Set the AWT transaction log file
threshold

■ Call the
ttCacheAWTThresholdSet
built-in procedure

None CACHE_MANAGER

Enable or disable monitoring of
AWT cache groups

■ Call the
ttCacheAWTMonitorConfig
built-in procedure

None CACHE_MANAGER

Table 3–1 (Cont.) Oracle and TimesTen user privileges required for cache operations

Cache operation
Privileges required for Oracle
cache administration user1

Privileges required for TimesTen
cache manager user2

Configuring the Oracle database to cache data in TimesTen

Setting Up a Caching Infrastructure 3-9

Automatically create Oracle objects used to manage caching of Oracle data
TimesTen can automatically create Oracle objects owned by the cache administration
user, such as cache and replication metadata tables, change log tables, and triggers
when particular cache grid and cache group operations are performed. Some of these
objects are used to store information about TimesTen databases that are associated
with a particular cache grid. Other objects are used to enforce the predefined
behaviors of autorefresh cache groups and AWT cache groups.

These Oracle objects are automatically created if the cache administration user has
been granted the required privileges by running the SQL*Plus script TimesTen_
install_dir/oraclescripts/grantCacheAdminPrivileges.sql as the sys
user. The set of required privileges include CREATE SESSION, RESOURCE, CREATE
ANY TRIGGER, and the TT_CACHE_ADMIN_ROLE role. The cache administration user
name is passed as an argument to the grantCacheAdminPrivileges.sql script.

In addition to the privileges granted to the cache administration user by running the
grantCacheAdminPrivileges.sql script, this user may also need to be granted
privileges such as SELECT or INSERT on the cached Oracle tables depending on the
types of cache groups you create, and the operations that yo perform on the cache
groups and their cache tables. See Table 3–1 for a complete list of privileges that need
to be granted to the cache administration user in order to perform particular cache
grid, cache group, and cache table operations.

Enable or disable tracking of DDL
statements issued on cached Oracle
tables

■ Call the
ttCacheDDLTrackingConfig
built-in procedure

CREATE SESSION CACHE_MANAGER

Return information about cache
grids

■ Call the ttGridInfo built-in
procedure

■ CREATE SESSION

■ TT_CACHE_ADMIN_ROLE role

CACHE_MANAGER

Return information about cache grid
nodes

■ Call the ttGridNodeStatus
built-in procedure

■ CREATE SESSION

■ TT_CACHE_ADMIN_ROLE role

CACHE_MANAGER

1 At minimum, the cache administration user must have the CREATE ANY TYPE privilege.
2 At minimum, the cache manager user must have the CREATE SESSION privilege.
3 Not required if the Oracle objects used to manage the caching of Oracle data are manually created.
4 Required if the cache agent start policy is being set to always or norestart.
5 Required on all Oracle tables cached in the TimesTen cache group except for tables owned by the cache administration user.
6 The CACHE_MANAGER privilege includes the CREATE [ANY] CACHE GROUP privilege. ANY is required if the cache manager

user creates cache groups owned by a user other than itself.
7 ANY is required if any of the cache tables are owned by a user other than the cache manager user.
8 Required if the cache group's autorefresh mode is incremental and initial autorefresh state is OFF, and the Oracle objects used to

manage the caching of Oracle data are automatically created.
9 Required if the TimesTen user accessing the cache group does not own the cache group.
10 Required if the cache group's autorefresh mode is incremental.
11 Required if the TimesTen user accessing the cache group does not own all its cache tables.
12 The privilege must be granted to the Oracle user with the same name as the TimesTen cache manager user if the Oracle user is

not the cache administration user.
13 Required if the TimesTen user accessing the cache table does not own the table.

Table 3–1 (Cont.) Oracle and TimesTen user privileges required for cache operations

Cache operation
Privileges required for Oracle
cache administration user1

Privileges required for TimesTen
cache manager user2

Configuring the Oracle database to cache data in TimesTen

3-10 Oracle In-Memory Database Cache User's Guide

Example 3–4 Granting privileges to automatically create Oracle objects

As the sys user, run the grantCacheAdminPrivileges.sql script to grant
privileges to the cache administration user to automatically create Oracle objects used
to manage caching of Oracle data in a TimesTen database. In the following example,
the cache administration user name is cacheuser.

Use SQL*Plus to run the grantCacheAdminPrivileges.sql script:

SQL> @grantCacheAdminPrivileges "cacheuser"
SQL> exit

For example, with autorefresh cache groups, the Oracle objects used to enforce the
predefined behaviors of these cache group types are automatically created if the
objects do not already exist and one of the following occurs:

■ The cache group is created with its autorefresh state set to PAUSED or ON

■ The cache group is created with its autorefresh state set to OFF and then altered to
either PAUSED or ON

Manually create Oracle objects used to manage caching of Oracle data
The cache administration user requires the RESOURCE privilege to automatically create
the Oracle objects used to:

■ Store information about TimesTen databases that are associated with a particular
cache grid

■ Enforce the predefined behaviors of autorefresh cache groups. In this case, the
cache administration user also requires the CREATE ANY TRIGGER privilege to
automatically create these Oracle objects.

■ Enforce the predefined behaviors of AWT cache groups

For security purposes, if you do not want to grant the RESOURCE and CREATE ANY
TRIGGER privileges to the cache administration user required to automatically create
the Oracle objects, you can manually create these objects.

To manually create the Oracle tables and triggers used to enforce the predefined
behaviors of particular cache group types, run the SQL*Plus script TimesTen_
install_dir/oraclescripts/initCacheAdminSchema.sql as the sys user.
These objects must be created before you can create autorefresh cache groups and
AWT cache groups. The cache administration user name is passed as an argument to
the initCacheAdminSchema.sql script.

The initCacheAdminSchema.sql script also grants a minimal set of required
privileges including CREATE SESSION and the TT_CACHE_ADMIN_ROLE role to the
cache administration user. In addition to the privileges granted to the cache
administration user by running the initCacheAdminSchema.sql script, this user
may also need to be granted privileges such as SELECT or INSERT on the cached
Oracle tables depending on the types of cache groups you create and the operations
that you perform on the cache groups and their cache tables. See Table 3–1 for a
complete list of privileges that need to be granted to the cache administration user in
order to perform particular cache grid, cache group, and cache table operations.

To manually create the Oracle tables used to store information about TimesTen
databases that are associated with a particular cache grid, run the SQL*Plus script
TimesTen_install_dir/oraclescripts/initCacheGridSchema.sql as the
sys user. These tables must be created before you can create a cache grid. The cache
administration user name and the name of the cache grid that you create are passed as
arguments to the initCacheGridSchema.sql script.

Configuring a TimesTen database to cache Oracle data

Setting Up a Caching Infrastructure 3-11

Example 3–5 Manually creating Oracle objects used to manage caching of Oracle data

As the sys user, run the initCacheAdminSchema.sql script to manually create
Oracle objects used to enforce the predefined behaviors of autorefresh cache groups
and AWT cache groups, and grant a limited set of privileges to the cache
administration user. Then run the initCacheGridSchema.sql script to manually
create Oracle objects used to store information about TimesTen databases associated
with a particular cache grid. In the following example, the cache administration user
name is cacheuser and the cache grid name is ttGrid.

Use SQL*Plus to run the initCacheAdminSchema.sql and
initCacheGridSchema.sql scripts:

SQL> @initCacheAdminSchema "cacheuser"
SQL> @initCacheGridSchema "cacheuser" "ttGrid"
SQL> exit

Other Oracle objects associated with Oracle tables that are cached in an autorefresh
cache group are needed to enforce the predefined behaviors of these cache group
types. See "Manually creating Oracle objects for autorefresh cache groups" on
page 4-28 for details about how to create these additional objects after you create the
cache group.

To view a list of the Oracle objects created and used by TimesTen to manage the
caching of Oracle data, execute the following query in SQL*Plus as the sys user:

SQL> SELECT owner, object_name, object_type FROM all_objects WHERE object_name
 2 LIKE 'TT___%' ESCAPE '\';

The query returns a list of tables, indexes and triggers owned by either the timesten
user or the cache administration user.

Configuring a TimesTen database to cache Oracle data
This section describes the operations that must be performed on the TimesTen
database by the instance administrator or the cache manager user. The topics include:

■ Define a DSN for the TimesTen database

■ Create the TimesTen users

■ Grant privileges to the TimesTen users

■ Set the cache administration user name and password

Define a DSN for the TimesTen database
A TimesTen database that caches data from an Oracle database can be referenced by
either a system DSN or a user DSN. See "Managing TimesTen Databases" in Oracle
TimesTen In-Memory Database Operations Guide for more information about creating
TimesTen DSNs.

When creating a DSN for a TimesTen database that caches data from an Oracle
database, pay special attention to the settings of the following connection attributes.
All of these connection attributes can be set in a Data Manager DSN or a connection
string, unless otherwise stated.

■ PermSize specifies the allocated size of the database's permanent partition in MB.
Set this value to at least 32 MB.

■ OracleNetServiceName must be set to the net service name of the Oracle
database instance.

Configuring a TimesTen database to cache Oracle data

3-12 Oracle In-Memory Database Cache User's Guide

On Microsoft Windows systems, the net service name of the Oracle database
instance is specified in the Oracle Net Service Name field of the IMDB Cache tab
within the TimesTen ODBC Setup dialog box.

■ DatabaseCharacterSet must be set to the Oracle database character set.

You can determine the Oracle database character set by executing the following
query in SQL*Plus as any user:

SQL> SELECT value FROM nls_database_parameters
 2 WHERE parameter='NLS_CHARACTERSET';

■ UID specifies the name of a cache user, such as the cache manager user, that has
the same name as an Oracle user who can access the cached Oracle tables. The UID
connection attribute can be specified in a Data Manager DSN, a Client DSN, or a
connection string.

■ PWD specifies the password of the TimesTen user specified in the UID connection
attribute. The PWD connection attribute can be specified in a Data Manager DSN, a
Client DSN, or a connection string.

■ OraclePWD specifies the password of the Oracle user that has the same name as
the TimesTen user specified in the UID connection attribute and can access the
cached Oracle tables.

■ PassThrough can be set to control whether statements are to be executed in the
TimesTen database or passed through to be executed in the Oracle database. See
"Setting a passthrough level" on page 5-18.

■ LockLevel must be set to its default of 0 (row-level locking) because Oracle
In-Memory Database Cache does not support database-level locking.

■ TypeMode must be set to its default of 0 (Oracle type mode).

■ ReplicationApplyOrdering and CacheAwtParallelism control parallel
propagation of changes to TimesTen cache tables in an AWT cache group to the
corresponding Oracle tables. See "Configuring parallel propagation to Oracle
tables" on page 4-13.

Example 3–6 DSN for a TimesTen database that caches data from an Oracle database

The following example is the definition of the cachealone1 DSN that references the
first standalone TimesTen database that will become a member of the ttGrid cache
grid:

[cachealone1]
DataStore=/users/OracleCache/alone1
PermSize=64
OracleNetServiceName=orcl
DatabaseCharacterSet=WE8ISO8859P1

Create the TimesTen users
First you must create a user who performs cache grid and cache group operations. We
refer to this user as the cache manager user. This user must have the same name as an
Oracle user that can select from and update the cached Oracle tables. The Oracle user
can be the cache administration user, a schema user, or some other existing user. The
password of the cache manager user can be different than the password of the Oracle
user with the same name.

Configuring a TimesTen database to cache Oracle data

Setting Up a Caching Infrastructure 3-13

The cache manager user is responsible for creating and configuring the cache grid and
creating the cache groups. This user can also monitor the grid itself and various
operations that are performed on the cache groups.

Then, you must create a user with the same name as an Oracle schema user for each
schema user who owns or will own Oracle tables to be cached in the TimesTen
database. We refer to these users as cache table users, because the TimesTen cache tables
will be owned by these users. Therefore, the owner and name of a TimesTen cache
table is the same as the owner and name of the corresponding cached Oracle table. The
password of a cache table user can be different than the password of the Oracle
schema user with the same name.

Operations on a cache group or a cache table, such as loading a cache group or
updating a cache table, can be performed by any TimesTen user that has sufficient
privileges. In the examples throughout this guide, the cache manager user performs
these types of operations although these operations can be performed by another user,
such as a cache table user, that has the required privileges. If these operations are to be
performed by a TimesTen user other than the cache manager user, the other user must
have the same name as an Oracle user that can select from and update the cached
Oracle tables. Connect to the TimesTen database specifying that user's name in the
UID connection attribute, and supply the corresponding TimesTen and Oracle
passwords in the PWD and OraclePWD connection attributes, respectively, to perform
operations on a cache group or cache table.

Example 3–7 Creating the TimesTen users

In the following ttIsql utility example, create the TimesTen database by connecting
to the cachealone1 DSN as the instance administrator. Then create the cache
manager user cacheuser whose name, in this example, is the same as the Oracle
cache administration user. Then, create a cache table user oratt whose name is the
same as the Oracle schema user who will own the Oracle tables to be cached in the
TimesTen database.

% ttIsql cachealone1
Command> CREATE USER cacheuser IDENTIFIED BY timesten;
Command> CREATE USER oratt IDENTIFIED BY timesten;

Grant privileges to the TimesTen users
The privileges that the TimesTen users require depend on the types of cache groups
you create and the operations that you perform on the cache groups. The privileges
required for the TimesTen cache manager user and the Oracle cache administration
user for each cache operation are listed in Table 3–1.

Example 3–8 Granting privileges to the cache manager user

The cacheuser cache manager user requires privileges to perform the following
operations:

■ Set the cache administration user and password (CACHE_MANAGER)

■ Create and associate the TimesTen database with a cache grid (CACHE_MANAGER)

■ Start the cache agent and replication agent processes on the TimesTen database
(CACHE_MANAGER)

■ Attach the TimesTen database to the cache grid (CACHE_MANAGER)

■ Create cache groups to be owned by the cache administration user (CREATE
CACHE GROUP, inherited by the CACHE_MANAGER privilege; CREATE ANY TABLE

Configuring a cache grid

3-14 Oracle In-Memory Database Cache User's Guide

to create the underlying cache tables which will be owned by the oratt cache
table user)

As the instance administrator, use the ttIsql utility to grant the cache manager user
cacheuser the required privileges:

Command> GRANT CREATE SESSION, CACHE_MANAGER, CREATE ANY TABLE TO cacheuser;
Command> exit

Set the cache administration user name and password
You must set the cache administration user name and password in the TimesTen
database before any cache grid or cache group operation can be issued. The cache
agent connects to the Oracle database as this user to create and maintain Oracle objects
that store information used to manage a cache grid and enforce predefined behaviors
of particular cache group types.

The cache administration user name and password need to be set only once in each
TimesTen database that will cache Oracle data unless it needs to be changed. For
example, if the TimesTen database is destroyed and re-created, or the cache
administration user name is dropped and re-created in the Oracle database, the cache
administration user name and password must be set again.

The cache administration user name and password cannot be changed if the cache
agent is running on the TimesTen database or there are cache groups in the database.
The cache groups must be dropped before you can change the cache administration
user name and password. You must also stop the cache agent before you change the
cache administration user name and password, and then restart the cache agent after
the user name and password have been changed.

Example 3–9 Setting the cache administration user name and password

The cache administration user name and password can be set programmatically by
calling the ttCacheUidPwdSet built-in procedure as the cache manager user:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> call ttCacheUidPwdSet('cacheuser','oracle');

It can also be set from a command line by running a ttAdmin -cacheUidPwdSet
utility command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -cacheUidPwdSet -cacheUid cacheuser -cachePwd oracle cachealone1

If you do not specify the -cachePwd option, the ttAdmin utility prompts for the
cache administration user's password.

For more information about the utility, see "ttAdmin" in Oracle TimesTen In-Memory
Database Reference.

Configuring a cache grid
An Oracle table cannot be cached in separate cache groups within the same TimesTen
database. However, the table can be cached in separate cache groups within different
TimesTen databases.

A TimesTen cache grid provides users with Oracle databases a means to horizontally
scale out cache groups across multiple systems with read and write data consistency
across the TimesTen databases and predictable latency for database transactions. A
cache grid contains one or more grid members that collectively manage application
data using the relational data model. A grid member is either a standalone TimesTen

Configuring a cache grid

Setting Up a Caching Infrastructure 3-15

database or an active standby pair that consists of at least two replicated TimesTen
databases.

Each database of a grid member is called a grid node. A node is a single TimesTen
database that is either a standalone database, or the active database or standby
database of an active standby pair. Therefore, a grid member is composed of one or
two nodes.

Grid members can reside on the same system or on different systems. If the grid
members reside across different systems, the systems must be connected to each other
in a TCP/IP private network. Each system must have the same machine architecture,
operating system version, platform, and bit version. The TimesTen major release
number of all grid members must be the same.

A TimesTen database that is or is part of a grid member can contain local and global
cache groups as well as explicitly loaded and dynamic cache groups.

A cache grid can be associated with only one Oracle database. A TimesTen database
can be a member of only one cache grid. An Oracle database can be associated with
more than one cache grid and each grid can be administered by a different cache
administration user. A cache grid has no association with other cache grids.

The following sections describe the operations that must be performed on the
TimesTen database by the cache manager user:

■ Modify the PROCESSES Oracle system parameter for ten or more grid nodes

■ Create a cache grid

■ Associate a TimesTen database with a cache grid

Modify the PROCESSES Oracle system parameter for ten or more grid nodes
If you are planning a grid with ten or more nodes, modify the PROCESSES Oracle
system parameter. Use this guideline:

PROCESSES >= 10*GridMembers + DLConnections + OraBackgroundProcesses

where:

■ GridMembers = number of grid members

■ DLConnections = number of dynamic load connections

■ OraBackgroundProcesses = number of Oracle background processes

The number of dynamic load connections is determined by how many sessions will
have dynamic cache group operations.

Note: See "Administering an Active Standby Pair with Cache
Groups" in Oracle TimesTen In-Memory Database Replication Guide for
more information about replicating cache tables.

Note: See "Dynamic cache groups" on page 4-40 for more
information about dynamic cache groups.

See "Global cache groups" on page 4-41 for more information about
global cache groups.

Configuring a cache grid

3-16 Oracle In-Memory Database Cache User's Guide

For more information about modifying an Oracle system parameter, see "Changing
Parameter Values in a Parameter File" in Oracle Database Reference. For more
information about Oracle background processes, see "Background Processes" in Oracle
Database Reference.

Create a cache grid
In the examples used throughout the rest of this guide, you will create a cache grid
ttGrid that contains three grid members: two standalone TimesTen databases and an
active standby pair consisting of three TimesTen databases. This chapter shows how to
associate one of the standalone databases with the cache grid. Subsequent chapters
show how to create the other standalone database and the active standby pair, and
how to associate those members with the grid.

See Example 3–6 for the DSN definition of the first standalone TimesTen database.

You can create a cache grid from any of the standalone databases, or from either the
active or standby database of the active standby pair. A cache grid is created only once
from any one of the grid members.

Example 3–10 Creating a cache grid

Create the ttGrid cache grid from the first standalone database by calling the
ttGridCreate built-in procedure as the cache manager user:

Command> call ttGridCreate('ttGrid');

All the databases in these examples, except for the read-only subscriber database of the
active standby pair, will be associated with the ttGrid cache grid.

If you manually created the Oracle objects used to store information about TimesTen
databases that are associated with a particular cache grid as described in "Manually
create Oracle objects used to manage caching of Oracle data" on page 3-10, you do not
need to call ttGridCreate because the grid, in effect, was created by running the
initCacheGridSchema.sql script.

By default, you must associate a TimesTen database with a cache grid before you can
create cache groups in that database. For backward compatibility, you can set the
CacheGridEnable connection attribute to 0 so that you do not have to create a cache
grid and associate the TimesTen database with the grid before cache groups can be
created within that database. However, regardless of the setting of
CacheGridEnable, you must create a cache grid and associate the TimesTen
database with the grid before you can create global cache groups within that database.
See "Global cache groups" on page 4-41 for more information about global cache
groups.

CacheGridEnable is set to 1 by default.

Associate a TimesTen database with a cache grid
All standalone databases, and the active and standby databases of the active standby
pair must be associated with a cache grid before you can create cache groups within
those databases.

Example 3–11 Associating a TimesTen database with a cache grid

Associate the first standalone database to the ttGrid cache grid by calling the
ttGridNameSet built-in procedure as the cache manager user:

Command> call ttGridNameSet('ttGrid');

Managing the cache agent

Setting Up a Caching Infrastructure 3-17

Testing the connectivity between the TimesTen and Oracle databases
To test the connectivity between the TimesTen and Oracle databases, set the
passthrough level to 3 and execute the following query, to be processed on the Oracle
database, as the cache manager user:

Command> passthrough 3;
Command> SELECT * FROM V$VERSION;
Command> passthrough 0;

If connectivity has been successfully established, the query returns the version of the
Oracle database. If it does not, check the following for correctness:

■ The Oracle net service name set in the OracleNetServiceName connection
attribute and the state of the Oracle server

■ The settings of the shared library search path environment variable such as LD_
LIBRARY_PATH or SHLIB_PATH

■ The setting of the cache administration user name in the TimesTen database

Example 3–12 Determining the cache administration user name setting

The cache administration user name setting can be returned programmatically by
calling the ttCacheUidGet built-in procedure as the cache manager user:

Command> call ttCacheUidGet;

It can also be returned from a command line by running a ttAdmin -cacheUidGet
utility command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -cacheUidGet cachealone1

Managing the cache agent
The cache agent is a TimesTen process that performs cache operations such as loading
a cache group and autorefresh, as well as manages Oracle objects used to enforce the
predefined behaviors of particular cache group types.

Example 3–13 Starting the cache agent

The cache agent can be manually started programmatically by calling the
ttCacheStart built-in procedure as the cache manager user:

Command> call ttCacheStart;

It can also be started from a command line by running a ttAdmin -cacheStart
utility command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -cacheStart cachealone1

Example 3–14 Stopping the cache agent

The cache agent can be manually stopped programmatically by calling the
ttCacheStop built-in procedure as the cache manager user:

Command> call ttCacheStop;

It can also be stopped from a command line by running a ttAdmin -cacheStop
utility command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -cacheStop cachealone1

Managing the cache agent

3-18 Oracle In-Memory Database Cache User's Guide

The ttCacheStop built-in procedure has an optional parameter and the ttAdmin
-cacheStop utility command has an option -stopTimeout that specifies how long
the TimesTen main daemon process waits for the cache agent to stop. If the cache
agent does not stop within the specified timeout period, the TimesTen daemon stops
the cache agent. The default cache agent stop timeout is 100 seconds. A value of 0
specifies to wait indefinitely.

Do not stop the cache agent immediately after you have dropped or altered an
autorefresh cache group. Instead, wait for at least two minutes to allow the cache
agent to clean up Oracle objects such as change log tables and triggers that were
created and used to manage the cache group.

Set a cache agent start policy
A cache agent start policy determines how and when the cache agent process starts on
a TimesTen database. The cache agent start policy can be set to:

■ manual

■ always

■ norestart

The default start policy is manual, which means the cache agent must be started
manually by calling the ttCacheStart built-in procedure or running a ttAdmin
-cacheStart utility command. To manually stop a running cache agent process, call
the ttCacheStop built-in procedure or run a ttAdmin -cacheStop utility
command.

When the start policy is set to always, the cache agent starts automatically when the
TimesTen main daemon process starts. With the always start policy, the cache agent
cannot be stopped when the main daemon is running unless the start policy is first
changed to either manual or norestart. Then issue a manual stop by calling the
ttCacheStop built-in procedure or running a ttAdmin -cacheStop utility
command.

With the manual and always start policies, the cache agent automatically restarts
when the database recovers after a failure such as a database invalidation. If the
database was attached to a cache grid when the failure occurred, it is automatically
reattached to the grid when the database recovers.

Setting the cache agent start policy to norestart means the cache agent must be
started manually by calling the ttCacheStart built-in procedure or running a
ttAdmin -cacheStart utility command, and stopped manually by calling the
ttCacheStop built-in procedure or running a ttAdmin -cacheStop utility
command.

With the norestart start policy, the cache agent does not automatically restart when
the database recovers after a failure such as a database invalidation. You must restart
the cache agent manually by calling the ttCacheStart built-in procedure or running
a ttAdmin -cacheStart utility command. If the database was attached to a cache
grid when the failure occurred, it is not automatically reattached to the grid when the
database recovers. You must call the ttGridAttach built-in procedure to reattach the
database to the grid.

Note: The TimesTen X/Open XA and Java Transaction API (JTA)
implementations do not work with Oracle In-Memory Database
Cache. The start of any XA or JTA transaction fails if the cache agent is
running.

Managing the cache agent

Setting Up a Caching Infrastructure 3-19

Example 3–15 Setting a cache agent start policy

The cache agent start policy can be set programmatically by calling the
ttCachePolicySet built-in procedure as the cache manager user:

Command> call ttCachePolicySet('always');

It can also be set from a command line by running a ttAdmin -cachePolicy utility
command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -cachePolicy norestart cachealone1

Note: For more details, see "ttAdmin," "ttCachePolicySet,"
"ttCacheStart," "ttCachestop," and "ttGridAttach" in the Oracle
TimesTen In-Memory Database Reference.

Managing the cache agent

3-20 Oracle In-Memory Database Cache User's Guide

4

Defining Cache Groups 4-1

4Defining Cache Groups

The following sections describe the different types of cache groups and how to define
them:

■ Cache groups and cache tables

■ Creating a cache group

■ Caching Oracle synonyms

■ Caching Oracle LOB data

■ Implementing aging in a cache group

■ Dynamic cache groups

■ Global cache groups

Cache groups and cache tables
A cache group defines the Oracle data to cache in the TimesTen database. When you
create a cache group, cache tables are created in the TimesTen database that
correspond to the Oracle tables being cached.

A separate table definition must be specified in the cache group definition for each
Oracle table that is being cached. The owner, table name, and cached column names of
a TimesTen cache table must match the owner, table name, and column names of the
corresponding cached Oracle table. The cache table can contain all or a subset of the
columns and rows of the cached Oracle table. Each TimesTen cache table must have a
primary key.

Before you define the cache group table, create the Oracle tables that are to be cached.
Each table should be either:

■ An Oracle table with a primary key on non-nullable columns. The TimesTen cache
table primary key must be defined on the full Oracle table primary key. For
example, if the cached Oracle table has a composite primary key on columns c1,
c2 and c3, the TimesTen cache table must also have a composite primary key on
columns c1, c2 and c3.

The following example shows how a cache group is created from an Oracle table
with a composite primary key. Create the job_history table with a composite
key on the Oracle database:

SQL> CREATE TABLE job_history
 (employee_id NUMBER(6) NOT NULL,
 start_date DATE NOT NULL,
 end_date DATE NOT NULL,
 job_id VARCHAR2(10) NOT NULL,

Cache groups and cache tables

4-2 Oracle In-Memory Database Cache User's Guide

 department_id NUMBER(4),
 PRIMARY KEY(employee_id, start_date));
Table created.

Create the cache group on TimesTen with all columns of the composite primary
key:

Command> CREATE WRITETHROUGH CACHE GROUP job_hist_cg
 > FROM oratt.job_history
 > (employee_id NUMBER(6) NOT NULL,
 > start_date DATE NOT NULL,
 > end_date DATE NOT NULL,
 > job_id VARCHAR2(10) NOT NULL,
 > department_id NUMBER(4),
 > PRIMARY KEY(employee_id, start_date));

■ An Oracle table with non-nullable columns, which has a unique index defined on
one or more of the non-nullable columns in this table. The TimesTen cache table
primary key must be defined on all of the columns in the unique index. For
example, if the unique index for the Oracle table is made up of multiple columns
c1, c2 and c3, the TimesTen cache table must have a composite primary key on
columns c1, c2 and c3.

The following examples create Oracle unique indexes defined on tables with
non-nullable columns.

SQL> CREATE TABLE regions(
 region_id NUMBER NOT NULL,
 region_name VARCHAR2(25));
Table created.
SQL> CREATE UNIQUE INDEX region_idx
 ON regions(region_id);
Index created.

SQL> CREATE TABLE sales(
 prod_id INT NOT NULL,
 cust_id INT NOT NULL,
 quantity_sold INT NOT NULL,
 time_id DATE NOT NULL);
Table created.
SQL> CREATE UNIQUE INDEX sales_index ON sales(prod_id, cust_id);
Index created.

After creation of the Oracle table and unique index, you can create cache groups
on TimesTen for these tables using the unique index columns as the primary key
definition as shown below:

Command> CREATE WRITETHROUGH CACHE GROUP region_cg
 > FROM oratt.regions
 > (region_id NUMBER NOT NULL PRIMARY KEY,
 > region_name VARCHAR2(25));

Command> CREATE WRITETHROUGH CACHE GROUP sales_cg
 > FROM oratt.sales
 > (prod_id INT NOT NULL, cust_id INT NOT NULL,
 > quantity_sold INT NOT NULL, time_id DATE NOT NULL,
 > PRIMARY KEY(prod_id, cust_id));

A TimesTen database can contain multiple cache groups. A cache group can contain
one or more cache tables. An Oracle table cannot be cached in more than one cache
group within the same TimesTen database.

Cache groups and cache tables

Defining Cache Groups 4-3

Creating indexes on a cache table in TimesTen can help speed up particular queries
issued on the table in the same fashion as on a TimesTen regular table. You can create
non-unique indexes on a TimesTen cache table. Do not create unique indexes on a
cache table that do not match any unique index on the cached Oracle table. Otherwise,
it can cause unique constraint failures in the cache table that do not occur in the cached
Oracle table, and result in these tables in the two databases being no longer
synchronized with each other when autorefresh operations are performed.

Single-table cache group
The simplest cache group is one that caches a single Oracle table. In a single-table
cache group, there is a root table but no child tables.

Figure 4–1 shows a single-table cache group target_customers that caches the
customer table.

Figure 4–1 Cache group with a single table

Multiple-table cache group
A multiple-table cache group is one that defines a root table and one or more child
tables. A cache group can only contain one root table. Each child table must reference
the primary key or a unique index of the root table or of another child table in the
cache group using a foreign key constraint. Although tables in a multiple-table cache
group must be related to each other in the TimesTen database through foreign key

Oracle Database

customer
addressnamecust_num

Cache group target_customers

TimesTen

122
342
663

Jim Johnston
Jane Stone
Mary J. Warren

231 Main, Needles CA 92363
4223 Cowper, Palo Alto CA 94302
673 State, Madison WI 53787

region

West
West
Midwest

customer

Cache groups and cache tables

4-4 Oracle In-Memory Database Cache User's Guide

constraints, it is not required that the tables be related to each other in the Oracle
database. The root table does not reference any table in the cache group with a foreign
key constraint.

Figure 4–2 shows a multiple-table cache group customer_orders that caches the
customer, orders and order_item tables. Each parent table in the customer_
orders cache group has a primary key that is referenced by a child table through a
foreign key constraint. The customer table is the root table of the cache group
because it does not reference any table in the cache group with a foreign key
constraint. The primary key of the root table is considered the primary key of the cache
group. The orders table is a child table of the customer root table. The order_item
table is a child table of the orders child table.

Figure 4–2 Cache group with multiple tables

The table hierarchy in a multiple-table cache group can designate child tables to be
parents of other child tables. A child table cannot reference more than one parent
table. However, a parent table can be referenced by more than one child table.

Oracle Database

customer (Root Table)

ord_num cust_num when_placed when_shipped

orders

ord_num prod_num quantity

order_item

Cache group customer_orders

TimesTen

122
122
663

44325
65432
76543

10/7/07
8/24/08
4/2/09

10/7/07
8/27/08
4/8/09

44325
44325
65432
76543 SD07 2

SD07
TR3A
FT094

1
5
1

Child
Tables

addressnamecust_num region

122
342
663

Jim Johnston
Jane Stone
Mary J. Warren

231 Main, Needles CA 92363
4223 Cowper, Palo Alto CA 94302
673 State, Madison WI 53787

West
West
Midwest

customer

orders

order_item

Data for all customers

Cache groups and cache tables

Defining Cache Groups 4-5

Figure 4–3 shows an improper cache table hierarchy. Neither the customer nor the
product table references a table in the cache group with a foreign key constraint. This
results in the cache group having two root tables which is invalid.

Figure 4–3 Problem: Cache group contains two root tables

To resolve this problem and cache all the tables, create a cache group which contains
the customer, orders, and order_item tables, and a second cache group which
contains the product and the inventory tables as shown in Figure 4–4.

Oracle Database

customer

orders

product

order_item

customer (Root Table)

ord_num cust_num when_placed when_shipped
orders

ord_num prod_num quantity

order_item

product

Cache group customer_orders

TimesTen

122
122
663

44325
65432
76543

10/7/07
8/24/08
4/2/09

10/7/07
8/27/08
4/8/09

44325
44325
65432
76543 SD07 2

SD07
TR3A
FT094

1
5
1

addressnamecust_num region

122
342
663

Jim Johnston
Jane Stone
Mary J. Warren

231 Main, Needles CA 92363
4223 Cowper, Palo Alto 94302
673 State, Madison WI 53787

West
West
Midwest

prod_num name price ship_weight description
SD07
TR3A
FT094
FT133

$4.50
$1.94
$2.76
$1.50

2 lbs
5.4 lbs
7.5 lbs
2.5 lbs

1" brad
.3" washer
.4" washer
.5" washer

brad
washer
washer
washer

inventory

inventory
prod_num warehouse quantity

SD07
TR3A
FT094
FT133

2000
10000
30000
5000

New York
London
London
London

Cannot Define
Two Root Tables

Creating a cache group

4-6 Oracle In-Memory Database Cache User's Guide

Figure 4–4 Solution: Create two cache groups

Creating a cache group
You create cache groups by using a CREATE CACHE GROUP SQL statement or by
using Oracle SQL Developer, a graphical tool. For more information about SQL
Developer, see Oracle SQL Developer Oracle TimesTen In-Memory Database Support User's
Guide.

Cache groups are identified as either system managed or user managed. System
managed cache groups enforce specific behaviors, while the behavior of a user
managed cache group can be customized. System managed cache group types include:

■ Read-only cache group

■ Asynchronous writethrough (AWT) cache group

■ Synchronous writethrough (SWT) cache group

See "User managed cache group" on page 4-19 for information about user managed
cache groups.

The following topics also apply to creating a cache group:

■ AUTOREFRESH cache group attribute

■ Using a WHERE clause

■ ON DELETE CASCADE cache table attribute

Oracle Database

customer (Root Table)

ord_num cust_num when_placed when_shipped
orders

ord_num prod_num quantity

order_item

product
Cache group customer_orders

TimesTen

122
122
663

44325
65432
76543

10/7/99
8/24/04
4/2/01

10/7/99
8/27/04
4/8/01

44325
44325
65432
76543 SD07 2

SD07
TR3A
FT094

1
5
1

addressnamecust_num region

122
342
663

Jim Johnston
Jane Stone
Mary J. Warren

231 Main, Needles CA 92363
4223 Cowper, Palo Alto 94302
673 State, Madison WI 53787

West
West
Midwest

prod_num name price ship_weight description
SD07
TR3A
FT094
FT133

$4.50
$1.94
$2.76
$1.50

2 lbs
5.4 lbs
7.5 lbs
2.5 lbs

1" brad
.3" washer
.4" washer
.5" washer

brad
washer
washer
washer

inventory
prod_num warehouse quantity

SD07
TR3A
FT094
FT133

2000
10000
30000
5000

New York
London
London
London

Cache group product_inventory

customer

orders

product

order_item

inventory

Creating a cache group

Defining Cache Groups 4-7

■ UNIQUE HASH ON cache table attribute

Cache groups must be created by and are owned by the cache manager user.

You cannot cache Oracle data in a temporary database.

Read-only cache group
A read-only cache group enforces a caching behavior where the TimesTen cache tables
cannot be updated directly, and committed updates on the cached Oracle tables are
automatically refreshed to the cache tables as shown in Figure 4–5.

Figure 4–5 Read-only cache group

If the TimesTen database is unavailable for whatever reason, you can still update the
Oracle tables that are cached in a read-only cache group. When the TimesTen database
returns to operation, updates that were committed on the cached Oracle tables while
the TimesTen database was unavailable are automatically refreshed to the TimesTen
cache tables.

The following are the definitions of the Oracle tables that will be cached in the
read-only cache groups that are defined in Example 4–1, Example 4–10, Example 4–11,
Example 4–19 and Example 4–20. The Oracle tables are owned by the schema user
oratt. The oratt user must be granted the CREATE SESSION and RESOURCE
privileges before it can create tables.

CREATE TABLE customer
(cust_num NUMBER(6) NOT NULL PRIMARY KEY,

Oracle Database

TimesTen

Autorefresh
from Oracle

Readonly
cache group

Passthrough SQL*

Application

* Depending on the PassThrough attribute setting

Creating a cache group

4-8 Oracle In-Memory Database Cache User's Guide

 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100));

CREATE TABLE orders
(ord_num NUMBER(10) NOT NULL PRIMARY KEY,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL);

The Oracle user with the same name as the TimesTen cache manager user must be
granted the SELECT privilege on the oratt.customer and oratt.orders tables in
order for the cache manager user to create a read-only cache group that caches these
tables, and for autorefresh operations to occur from the cached Oracle tables to the
TimesTen cache tables.

Use the CREATE READONLY CACHE GROUP statement to create a read-only cache
group.

Example 4–1 Creating a read-only cache group

The following statement creates a read-only cache group customer_orders that
caches the tables oratt.customer (root table) and oratt.orders (child table):

CREATE READONLY CACHE GROUP customer_orders
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num)),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num));

The cache tables in a read-only cache group cannot be updated directly. However, you
can set the passthrough level to 2 to allow committed update operations issued on a
TimesTen cache table to be passed through and processed on the cached Oracle table,
and then have the updates be automatically refreshed into the cache table. See "Setting
a passthrough level" on page 5-18.

The effects of a passed through statement on cache tables in a read-only cache group
do not occur in the transaction in which the update operation was issued. Instead, they
are seen after the passed through update operation has been committed on the Oracle
database and the next automatic refresh of the cache group has occurred. The Oracle
user with the same name as the TimesTen cache manager user must be granted the
INSERT, UPDATE and DELETE privileges on the Oracle tables that are cached in the
read-only cache group in order for the passed through update operations to be
processed on the cached Oracle tables.

If you manually created the Oracle objects used to enforce the predefined behaviors of
an autorefresh cache group as described in "Manually create Oracle objects used to
manage caching of Oracle data" on page 3-10, you need to set the autorefresh state to
OFF when creating the cache group.

Creating a cache group

Defining Cache Groups 4-9

Then you need to run the ttIsql utility's cachesqlget command to generate a
SQL*Plus script used to create a log table and a trigger in the Oracle database for each
Oracle table that is cached in the read-only cache group. See "Manually creating Oracle
objects for autorefresh cache groups" on page 4-28 for information about how to create
these objects.

Restrictions with read-only cache groups
The following restrictions apply when using a read-only cache group:

■ The cache tables cannot be updated directly.

■ Only the ON DELETE CASCADE and UNIQUE HASH ON cache table attributes can
be used in the cache table definitions.

See "ON DELETE CASCADE cache table attribute" on page 4-32 for more
information about the ON DELETE CASCADE cache table attribute.

See "UNIQUE HASH ON cache table attribute" on page 4-33 for more information
about the UNIQUE HASH ON cache table attribute.

■ A FLUSH CACHE GROUP statement cannot be issued on the cache group.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement.

■ A TRUNCATE TABLE statement issued on a cached Oracle table is not
automatically refreshed to the TimesTen cache table.

■ A LOAD CACHE GROUP statement can only be issued on the cache group if the
cache tables are empty, unless the cache group is dynamic.

See "Loading and refreshing a cache group" on page 5-2 for more information
about the LOAD CACHE GROUP statement.

See "Dynamic cache groups" on page 4-40 for more information about dynamic
cache groups.

■ The autorefresh state must be PAUSED before you can issue a LOAD CACHE
GROUP statement on the cache group, unless the cache group is dynamic, in which
case the autorefresh state must be PAUSED or ON. The LOAD CACHE GROUP
statement cannot contain a WHERE clause, unless the cache group is dynamic, in
which case the WHERE clause must be followed by a COMMIT EVERY n ROWS
clause.

See "AUTOREFRESH cache group attribute" on page 4-25 for more information
about autorefresh states.

See "Using a WHERE clause" on page 4-29 for more information about WHERE
clauses in cache group definitions and operations.

■ The autorefresh state must be PAUSED before you can issue a REFRESH CACHE
GROUP statement on the cache group. The REFRESH CACHE GROUP statement
cannot contain a WHERE clause.

See "Loading and refreshing a cache group" on page 5-2 for more information
about the REFRESH CACHE GROUP statement.

■ All tables and columns referenced in WHERE clauses when creating, loading or
unloading the cache group must be fully qualified. For example:

user_name.table_name and user_name.table_name.column_name

■ Least recently used (LRU) aging cannot be specified on the cache group, unless the
cache group is dynamic where LRU aging is defined by default.

Creating a cache group

4-10 Oracle In-Memory Database Cache User's Guide

See "LRU aging" on page 4-35 for more information about LRU aging.

■ Read-only cache groups cannot cache Oracle views or materialized views.

Asynchronous writethrough (AWT) cache group
An asynchronous writethrough (AWT) cache group enforces a caching behavior
where committed updates on the TimesTen cache tables are automatically and
asynchronously propagated to the cached Oracle tables as shown in Figure 4–6.

Figure 4–6 Asynchronous writethrough cache group

The transaction commit on the TimesTen database occurs asynchronously from the
commit on the Oracle database. This enables an application to continue issuing
transactions on the TimesTen database without waiting for the Oracle transaction to
complete. However, your application cannot ensure when the transactions are
completed on the Oracle database.

Execution of the UNLOAD CACHE GROUP statement for an AWT cache group waits
until updates on the rows have been propagated to the Oracle database.

You can update cache tables in an AWT cache group even if the Oracle database is
unavailable. When the Oracle database returns to operation, updates that were
committed on the cache tables while the Oracle database was unavailable are
automatically propagated to the cached Oracle tables.

The following is the definition of the Oracle table that will be cached in the AWT cache
groups that are defined in Example 4–2, Example 4–12 and Example 4–14. The Oracle

Oracle Database

TimesTen

Automatically
propagate

updates

Asynchronous
writethrough
cache group

Load upon request

Application

Creating a cache group

Defining Cache Groups 4-11

table is owned by the schema user oratt. The oratt user must be granted the
CREATE SESSION and RESOURCE privileges before it can create tables.

CREATE TABLE customer
(cust_num NUMBER(6) NOT NULL PRIMARY KEY,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100));

The Oracle user with the same name as the TimesTen cache manager user must be
granted the SELECT privilege on the oratt.customer table in order for the cache
manager user to create an AWT cache group that caches this table. The Oracle cache
administration user must be granted the INSERT, UPDATE and DELETE privileges on
the oratt.customer table for asynchronous writethrough operations to occur from
the TimesTen cache table to the cached Oracle table.

Use the CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP statement to
create an AWT cache group.

Example 4–2 Creating an AWT cache group

The following statement creates an asynchronous writethrough cache group new_
customers that caches the oratt.customer table:

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP new_customers
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num));

The following sections describe configuration, behavior, and management for AWT
cache groups:

■ Managing the replication agent

■ Configuring parallel propagation to Oracle tables

■ What an AWT cache group does and does not guarantee

■ Restrictions with AWT cache groups

■ Reporting Oracle execution errors for AWT cache groups

Managing the replication agent
Performing asynchronous writethrough operations requires that the replication agent
be running on the TimesTen database that contains AWT cache groups. Executing a
CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP statement creates a
replication scheme that enables committed updates on the TimesTen cache tables to be
asynchronously propagated to the cached Oracle tables.

After you have created AWT cache groups, start the replication agent on the TimesTen
database.

Example 4–3 Starting the replication agent

The replication agent can be manually started programmatically by calling the
ttRepStart built-in procedure as the cache manager user:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> call ttRepStart;

Creating a cache group

4-12 Oracle In-Memory Database Cache User's Guide

It can also be started from a command line by running a ttAdmin -repStart utility
command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -repStart cachealone1

The replication agent does not start unless there is at least one AWT cache group or
replication scheme in the TimesTen database.

If the replication agent is running, it must be stopped before you can issue another
CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP statement or a DROP
CACHE GROUP statement on an AWT cache group.

Example 4–4 Stopping the replication agent

The replication agent can be manually stopped programmatically by calling the
ttRepStop built-in procedure as the cache manager user:

Command> call ttRepStop;

It can also be stopped from a command line by running a ttAdmin -repStop utility
command as a TimesTen external user with the CACHE_MANAGER privilege:

% ttAdmin -repStop cachealone1

You can set a replication agent start policy to determine how and when the replication
agent process starts on a TimesTen database.

The default start policy is manual which means the replication agent must be started
manually by calling the ttRepStart built-in procedure or running a ttAdmin
-repStart utility command. To manually stop a running replication agent process,
call the ttRepStop built-in procedure or run a ttAdmin -repStop utility
command.

The start policy can be set to always so that the replication agent starts automatically
when the TimesTen main daemon process starts. With the always start policy, the
replication agent cannot be stopped when the main daemon is running unless the start
policy is changed to either manual or norestart and then a manual stop is issued by
calling the ttRepStop built-in procedure or running a ttAdmin -repStop utility
command.

With the manual and always start policies, the replication agent automatically
restarts after a failure such as a database invalidation.

The start policy can be set to norestart which means the replication agent must be
started manually by calling the ttRepStart built-in procedure or running a
ttAdmin -repStart utility command, and stopped manually by calling the
ttRepStop built-in procedure or running a ttAdmin -repStop utility command.

With the norestart start policy, the replication agent does not automatically restart
after a failure such as a database invalidation. You must restart the replication agent
manually by calling the ttRepStart built-in procedure or running a ttAdmin
-repStart utility command.

Example 4–5 Setting a replication agent start policy

As the instance administrator, grant the ADMIN privilege to the cache manager user:

% ttIsql cachealone1
Command> GRANT ADMIN TO cacheuser;
Command> exit

Creating a cache group

Defining Cache Groups 4-13

The replication agent start policy can be set programmatically by calling the
ttRepPolicySet built-in procedure as the cache manager user:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> call ttRepPolicySet('manual');
Command> exit

It can also be set from a command line by running a ttAdmin -repPolicy utility
command as a TimesTen external user with the ADMIN privilege:

% ttAdmin -repPolicy always cachealone1

Configuring parallel propagation to Oracle tables
To improve throughput for an AWT cache group, you can configure multiple threads
that act in parallel to propagate and apply transactional changes to the Oracle
database. Parallel propagation enforces transactional dependencies and applies
changes in AWT cache tables to Oracle tables in commit order.

Parallel propagation is supported for the following configurations:

■ AWT cache groups in a standalone database

■ AWT cache groups with aging

■ AWT cache groups in an active standby pair replication scheme

■ AWT cache groups in a cache grid

The following data store attributes enable parallel propagation and control the number
of threads that operate in parallel to propagate changes from AWT cache tables to the
corresponding Oracle tables:

■ ReplicationApplyOrdering enables parallel propagation by default.

■ ReplicationParallelism defines the number of transmitter threads on the
source database and the number of receiver threads on the target database for
parallel replication in a replication scheme. This value can be between 2 and 32
when used solely for parallel replication. The default is 1. In addition, the value of
ReplicationParellelism cannot exceed half the value of
LogBufParallelism.

■ CacheAwtParallelism, when set, determines the number of threads used in
parallel propagation of changes from AWT cache tables to the Oracle tables. Set
this attribute to a number from 2 to 31. The default is 1.

Parallel propagation for an AWT cache group is configured with one of the following
scenarios:

■ ReplicationApplyOrdering is set to 0 and ReplicationParallelism is
greater than 1.

If you do not set CacheAwtParallelism, the number of threads that apply
changes to Oracle is 2 times the setting for ReplicationParallelism. For
example, if ReplicationParallelism=3, the number of threads that apply
changes to Oracle tables is 6. In this case, ReplicationParallelism can only
be set from 2 to 16; otherwise, twice the value would exceed the maximum
number of 31 threads for parallel propagation. If the value is set to 16, the
maximum number of threads defaults to 31.

■ ReplicationApplyOrdering is set to 0, ReplicationParallelism is equal
to or greater than 1, and CacheAwtParallelism is greater than 1. The value for
CacheAwtParallelism must be greater than or equal to the value set for
ReplicationParallelism and less than or equal to 31.

Creating a cache group

4-14 Oracle In-Memory Database Cache User's Guide

If CacheAwtParallelism is not specified, then ReplicationParallelism is
used to determine the number of threads that are used for parallel propagation to
Oracle. However, since this value is doubled for parallel propagation threads, you
can only set ReplicationParallelism to a number from 2 to 16. If the value is
set to 16, the maximum number of threads defaults to 31.

If both ReplicationParallelism and CacheAwtParallelism attributes are
set, the value set in CacheAwtParallelism configures the number of threads
used for parallel propagation. The setting for CacheAwtParallelism
determines the number of apply threads for parallel propagation and the setting
for ReplicationParallelism determines the number of threads for parallel
replication. Thus, if ReplicationParallelism is set to 4 and
CacheAwtParallelism is set to 6, then the number of threads that apply
changes to Oracle tables is 6. This enables the number of threads used to be
different for parallel replication and parallel propagation to Oracle tables.

These data store attributes are interrelated. Table 4–1 shows the result with the
combination of the various possible attribute values.

Note: For more information about parallel replication, see
"Configuring parallel replication" in Oracle TimesTen In-Memory
Database Replication Guide.

Table 4–1 Results of Parallel Propagation Data Store Attribute Relationships

ReplicationApply
Ordering ReplicationParallelism CacheAwtParallelism

Number of parallel propagation
threads

Set to 0, which
enables parallel
propagation

Set to > 1 for multiple
tracks and <= 16.

Not specified. Set to twice the value of
ReplicationParallelism.

Set to 0, which
enables parallel
propagation

Set to > 16 and <= 32 for
multiple tracks.

Not specified. Error is thrown. If
CacheAwtParallelism is not set,
then 2 times the value set in
ReplicationParallelism
specifies the number of threads.
Thus, in this case,
ReplicationParallelism
cannot be greater than 16.

Set to 0, which
enables parallel
propagation

Set to > 1 and <= 32 for
multiple tracks.

Set to >= to
ReplicationParallelism.

Set to number specified by
CacheAwtParallelism.

Set to 0, which
enables parallel
propagation

Set to > 1 and <= 32 for
multiple tracks.

Set to <
ReplicationParallelism.

Error is thrown at database
creation. The
CacheAwtParallelism must be
set to a value greater than or equal
to ReplicationParallelism.

Set to 0, which
enables parallel
propagation

Set to 1 or not specified.
Single track.

Set to > 1 Set to number specified by
CacheAwtParallelism.

Set to 1, which
disables parallel
propagation.

N/A Set to > 1 Error is thrown at database
creation, since parallelism is turned
off, but CacheAwtParallelism is
set to a value, expecting parallel
propagation to be enabled.

Creating a cache group

Defining Cache Groups 4-15

Any unique index, unique constraint, or foreign key constraint on columns in Oracle
tables that are to be cached must also be created on the cached tables within TimesTen.
If you cannot create the appropriate unique index, unique constraint, or foreign key
constraint on the cached table, either disable parallel propagation or do not cache
these columns. For example, if a table referenced by the foreign key constraint is too
large to cache in TimesTen, you would not be able to create the foreign key.

Foreign keys in Oracle tables that are to be cached must have indexes created on the
foreign keys. Consider these Oracle tables:

CREATE TABLE parent (c1 NUMBER PRIMARY KEY NOT NULL);
CREATE TABLE child (c1 NUMBER PRIMARY KEY NOT NULL,
 c2 NUMBER REFERENCES parent(c1));
CREATE TABLE grchild (c1 NUMBER PRIMARY KEY NOT NULL,
 c2 NUMBER REFERENCES parent(c1),
 c3 NUMBER REFERENCES parent(c1));

These indexes must be created:

CREATE INDEX idx_1 ON child(c2);
CREATE INDEX idx_2 ON grchild(c2);
CREATE INDEX idx_3 ON grchild(c3);

Parallel propagation cannot identify the case where two transactions have an implicit
dependency if the transactions act on different cache groups. This occurs because there
are no foreign keys on tables that are in different cache groups, even when there are
foreign keys in the Oracle tables. Do not use parallel propagation to Oracle when your
data model includes foreign keys in Oracle that cannot be created on cache tables.

What an AWT cache group does and does not guarantee
An AWT cache group can guarantee that:

■ No transactions are lost because of communication failures between the TimesTen
and Oracle databases.

■ If the replication agent is not running or loses its connection to the Oracle
database, automatic propagation of committed updates on the TimesTen cache
tables to the cached Oracle tables resumes after the agent is restarted or is able to
reconnect to the Oracle database.

■ Transactions are committed in the Oracle database in the same order they were
committed in the TimesTen database.

An AWT cache group cannot guarantee that:

■ All transactions committed successfully in the TimesTen database are successfully
propagated to and committed in the Oracle database. Execution errors on Oracle
cause the transaction in the Oracle database to be rolled back. For example, an
update on Oracle may fail because of a unique constraint violation. Transactions
that contain execution errors are not retried.

Execution errors are reported to the TimesTenDatabaseFileName.awterrs
file that resides in the same directory as the TimesTen database's checkpoint files.

Note: For more details on these data store attributes, see
"ReplicationApplyOrdering," "ReplicationParallelism," and
"CacheAwtParallelism" in the Oracle TimesTen In-Memory Database
Reference.

Creating a cache group

4-16 Oracle In-Memory Database Cache User's Guide

See "Reporting Oracle execution errors for AWT cache groups" on page 4-17 for
more information.

■ The absolute order of Oracle updates is preserved because TimesTen does not
resolve update conflicts. The following are some examples:

– An update is committed on a cache table in an AWT cache group. The same
update is committed on the cached Oracle table using a passthrough
operation. The cache table update, which is automatically and asynchronously
propagated to Oracle, may overwrite the passed through update that was
processed directly on the cached Oracle table depending on when the
propagated update and the passed through update is processed on Oracle.

– In two separate TimesTen databases (DB1 and DB2), different AWT cache
groups cache the same Oracle table. An update is committed on the cache
table in DB1. An update is then committed on the cache table in DB2. The two
cache tables reside in different TimesTen databases and cache the same Oracle
table. Because the writethrough operations are asynchronous, the update from
DB2 may get propagated to the Oracle database before the update from DB1,
resulting in the update from DB1 overwriting the update from DB2.

Using a dynamic AWT global cache group resolves this write inconsistency.
See "Global cache groups" on page 4-41 for more information about global
cache groups.

Restrictions with AWT cache groups
The following restrictions apply when using an AWT cache group:

■ Only the ON DELETE CASCADE and UNIQUE HASH ON cache table attributes can
be used in the cache table definitions.

See "ON DELETE CASCADE cache table attribute" on page 4-32 for more
information about the ON DELETE CASCADE cache table attribute.

See "UNIQUE HASH ON cache table attribute" on page 4-33 for more information
about the UNIQUE HASH ON cache table attribute.

■ A FLUSH CACHE GROUP statement cannot be issued on the cache group.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement

■ The cache table definitions cannot contain a WHERE clause.

See "Using a WHERE clause" on page 4-29 for more information about WHERE
clauses in cache group definitions and operations.

■ A TRUNCATE TABLE statement cannot be issued on the cache tables.

■ AWT cache groups cannot cache Oracle views or materialized views.

■ The replication agent must be stopped before creating or dropping an AWT cache
group.

See "Managing the replication agent" on page 4-11 for information about how to
stop and start the replication agent.

■ Committed updates on the TimesTen cache tables are not propagated to the
cached Oracle tables unless the replication agent is running.

■ To create an AWT cache group, the length of the absolute path name of the
TimesTen database cannot exceed 248 characters.

Creating a cache group

Defining Cache Groups 4-17

■ TimesTen does not detect or resolve update conflicts that occur on Oracle.
Committed updates made directly on a cached Oracle table may be overwritten by
a committed update made on the TimesTen cache table when the cache table
update is propagated to Oracle.

■ TimesTen performs deferred checking when determining whether a single SQL
statement causes a constraint violation with a unique index.

For example, suppose there is a unique index on a cached Oracle table's NUMBER
column, and a unique index on the same NUMBER column on the TimesTen cache
table. There are five rows in the cached Oracle table and the same five rows in the
cache table. The values in the NUMBER column range from 1 to 5.

An UPDATE statement is issued on the cache table to increment the value in the
NUMBER column by 1 for all rows. The operation succeeds on the cache table but
fails when it is propagated to the cached Oracle table.

This occurs because TimesTen performs the unique index constraint check at the
end of the statement's execution after all the rows have been updated. Oracle,
however, performs the constraint check each time after a row has been updated.

Therefore, when the row in the cache table with value 1 in the NUMBER column is
changed to 2 and the update is propagated to Oracle, it causes a unique constraint
violation with the row that has the value 2 in the NUMBER column of the cached
Oracle table.

Reporting Oracle execution errors for AWT cache groups
If transactions are not successfully propagated to and committed in the Oracle
database, then these execution errors cause the transaction in the Oracle database to be
rolled back. For example, an update on Oracle may fail because of a unique constraint
violation. Transactions that contain execution errors are not retried.

Execution errors are reported to the TimesTenDatabaseFileName.awterrs text
file that resides in the same directory as the TimesTen database checkpoint files.

Synchronous writethrough (SWT) cache group
A synchronous writethrough (SWT) cache group enforces a caching behavior where
committed updates on the TimesTen cache tables are automatically and synchronously
propagated to the cached Oracle tables as shown in Figure 4–7.

Note: See "Oracle errors reported by TimesTen for AWT" in Oracle
TimesTen In-Memory Database Troubleshooting Guide for information
about the contents of this file.

Creating a cache group

4-18 Oracle In-Memory Database Cache User's Guide

Figure 4–7 Synchronous writethrough cache group

The transaction commit on the TimesTen database occurs synchronously with the
commit on the Oracle database. When an application commits a transaction in the
TimesTen database, the transaction is processed in the Oracle database before it is
processed in TimesTen. The application is blocked until the transaction has completed
in both the Oracle and TimesTen databases.

If the transaction fails to commit in Oracle, the application must roll back the
transaction in TimesTen. If the Oracle transaction commits successfully but the
TimesTen transaction fails to commit, the cache tables in the SWT cache group are no
longer synchronized with the cached Oracle tables. To manually resynchronize the
cache tables with the cached Oracle tables, call the ttCachePropagateFlagSet
built-in procedure to disable update propagation, and then reissue the transaction in
the TimesTen database after correcting the problem that caused the transaction
commit to fail in TimesTen. You can also resynchronize the cache tables with the
cached Oracle tables by reloading the accompanying cache groups.

The following is the definition of the Oracle table that will be cached in the SWT cache
group that is defined in Example 4–6. The Oracle table is owned by the schema user
oratt. The oratt user must be granted the CREATE SESSION and RESOURCE privileges
before it can create tables.

CREATE TABLE product
(prod_num VARCHAR2(6) NOT NULL PRIMARY KEY,
 name VARCHAR2(30),
 price NUMBER(8,2),
 ship_weight NUMBER(4,1));

The Oracle user with the same name as the TimesTen cache manager user must be
granted the SELECT privilege on the oratt.product table in order for the cache
manager user to create an SWT cache group that caches this table. This Oracle user

Oracle Database

TimesTen

Automatically
propagate

updates

Synchronous
writethrough
cache group

Load
upon
creation

Application

Creating a cache group

Defining Cache Groups 4-19

must also be granted the INSERT, UPDATE and DELETE privileges on the oratt.product
table for synchronous writethrough operations to occur from the TimesTen cache table
to the cached Oracle table.

Use the CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP statement to create
an SWT cache group.

Example 4–6 Creating a SWT cache group

The following statement creates a synchronous writethrough cache group top_
products that caches the oratt.product table:

CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP top_products
FROM oratt.product
 (prod_num VARCHAR2(6) NOT NULL,
 name VARCHAR2(30),
 price NUMBER(8,2),
 ship_weight NUMBER(4,1),
 PRIMARY KEY(prod_num));

Restrictions with SWT cache groups
The following restrictions apply when using an SWT cache group:

■ Only the ON DELETE CASCADE and UNIQUE HASH ON cache table attributes can
be used in the cache table definitions.

See "ON DELETE CASCADE cache table attribute" on page 4-32 for more
information about the ON DELETE CASCADE cache table attribute.

See "UNIQUE HASH ON cache table attribute" on page 4-33 for more information
about the UNIQUE HASH ON cache table attribute.

■ A FLUSH CACHE GROUP statement cannot be issued on the cache group.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement

■ The cache table definitions cannot contain a WHERE clause.

See "Using a WHERE clause" on page 4-29 for more information about WHERE
clauses in cache group definitions and operations.

■ A TRUNCATE TABLE statement cannot be issued on the cache tables.

■ SWT cache groups cannot cache Oracle views or materialized views.

User managed cache group
If the system managed cache groups (read-only, AWT, SWT) do not satisfy your
application's requirements, you can create a user managed cache group that defines
customized caching behavior. For example:

■ You can define a user managed cache group to automatically refresh and
propagate committed updates between the Oracle and TimesTen databases by
using the AUTOREFRESH cache group attribute and the PROPAGATE cache table
attribute. Using both attributes enables bidirectional transmit, so that committed
updates on the TimesTen cache tables or the cached Oracle tables are propagated
or refreshed to each other.

■ You can use the LOAD CACHE GROUP, REFRESH CACHE GROUP, and FLUSH
CACHE GROUP statements to manually control the transmit of committed updates
between the Oracle and TimesTen databases.

Creating a cache group

4-20 Oracle In-Memory Database Cache User's Guide

■ You can specify the READONLY or the PROPAGATE cache table attribute on
individual cache tables in a user managed cache group to define read-only or
synchronous writethrough behavior at the table level.

■ You can cache Oracle materialized views in a user managed cache group that does
not use the PROPAGATE cache table attribute or the AUTOREFRESH cache group
attribute. The cache group must be manually loaded and flushed. You cannot
cache Oracle views.

The following are the definitions of the Oracle tables that will be cached in the user
managed cache groups that are defined in Example 4–7 and Example 4–8. The Oracle
tables are owned by the schema user oratt. The oratt user must be granted the
CREATE SESSION and RESOURCE privileges before it can create tables.

CREATE TABLE active_customer
 (custid NUMBER(6) NOT NULL PRIMARY KEY,
 name VARCHAR2(50),
 addr VARCHAR2(100),
 zip VARCHAR2(12),
 region VARCHAR2(12) DEFAULT 'Unknown');

CREATE TABLE ordertab
 (orderid NUMBER(10) NOT NULL PRIMARY KEY,
 custid NUMBER(6) NOT NULL);

CREATE TABLE cust_interests
 (custid NUMBER(6) NOT NULL,
 interest VARCHAR2(10) NOT NULL,
 PRIMARY KEY (custid, interest));

CREATE TABLE orderdetails
 (orderid NUMBER(10) NOT NULL,
 itemid NUMBER(8) NOT NULL,
 quantity NUMBER(4) NOT NULL,
 PRIMARY KEY (orderid, itemid));

Use the CREATE USERMANAGED CACHE GROUP statement to create a user managed
cache group.

Example 4–7 Creating a single-table user managed cache group

The following statement creates a user managed cache group update_anywhere_
customers that caches the oratt.active_customer table as shown in Figure 4–8:

CREATE USERMANAGED CACHE GROUP update_anywhere_customers
AUTOREFRESH MODE INCREMENTAL INTERVAL 30 SECONDS
FROM oratt.active_customer
 (custid NUMBER(6) NOT NULL,
 name VARCHAR2(50),
 addr VARCHAR2(100),
 zip VARCHAR2(12),
 PRIMARY KEY(custid),
 PROPAGATE);

Creating a cache group

Defining Cache Groups 4-21

Figure 4–8 Single-table user managed cache group

All columns except region are cached. Only customers whose customer ID is greater
than or equal to 1001 are cached. Committed updates on the oratt.active_
customer cache table or the oratt.active_customer cached Oracle table are
transmitted to the corresponding table.

The Oracle user with the same name as the TimesTen cache manager user must be
granted the SELECT privilege on the oratt.active_customer table in order for the
cache manager user to create a user managed cache group that caches this table, and
for autorefresh operations to occur from the cached Oracle table to the TimesTen cache
table. This Oracle user must also be granted the INSERT, UPDATE and DELETE
privileges on the oratt.active_customer table for synchronous writethrough
operations to occur from the TimesTen cache table to the cached Oracle table.

In this example, the AUTOREFRESH cache group attribute specifies that committed
updates on the oratt.active_customer cached Oracle table are automatically
refreshed to the TimesTen oratt.active_customer cache table every 30 seconds. The
PROPAGATE cache table attribute specifies that committed updates on the cache table
are automatically and synchronously propagated to the cached Oracle table.

See "AUTOREFRESH cache group attribute" on page 4-25 for more information about
defining an autorefresh mode, interval and state.

If you manually created the Oracle objects used to enforce the predefined behaviors of
a user managed cache group that uses the AUTOREFRESH MODE INCREMENTAL cache
group attribute as described in "Manually create Oracle objects used to manage
caching of Oracle data" on page 3-10, you need to set the autorefresh state to OFF
when creating the cache group.

Oracle Database

active_customer

active_customer
addr zipnamecustid

User managed cache group update_anywhere_customers

TimesTen

Updates on cached
Oracle table are autorefreshed
to TimesTen cache group

Updates on TimesTen
cache tables are propagated
to Oracle

Creating a cache group

4-22 Oracle In-Memory Database Cache User's Guide

Then you need to run the ttIsql utility's cachesqlget command to generate a
SQL*Plus script used to create a log table and a trigger in the Oracle database for each
Oracle table that is cached in the user managed cache group.

See "Manually creating Oracle objects for autorefresh cache groups" on page 4-28 for
more information.

Example 4–8 Creating a multiple-table user managed cache group

The following statement creates a user managed cache group western_customers
that caches the oratt.active_customer, oratt.ordertab, oratt.cust_
interests, and oratt.orderdetails tables as shown in Figure 4–9:

CREATE USERMANAGED CACHE GROUP western_customers
FROM oratt.active_customer
 (custid NUMBER(6) NOT NULL,
 name VARCHAR2(50),
 addr VARCHAR2(100),
 zip VARCHAR2(12),
 region VARCHAR2(12),
 PRIMARY KEY(custid),
 PROPAGATE)
 WHERE (oratt.active_customer.region = 'West'),
oratt.ordertab
 (orderid NUMBER(10) NOT NULL,
 custid NUMBER(6) NOT NULL,
 PRIMARY KEY(orderid),
 FOREIGN KEY(custid) REFERENCES oratt.active_customer(custid),
 PROPAGATE),
oratt.cust_interests
 (custid NUMBER(6) NOT NULL,
 interest VARCHAR2(10) NOT NULL,
 PRIMARY KEY(custid, interest),
 FOREIGN KEY(custid) REFERENCES oratt.active_customer(custid),
 READONLY),
oratt.orderdetails
 (orderid NUMBER(10) NOT NULL,
 itemid NUMBER(8) NOT NULL,
 quantity NUMBER(4) NOT NULL,
 PRIMARY KEY(orderid, itemid),
 FOREIGN KEY(orderid) REFERENCES oratt.ordertab(orderid))
 WHERE (oratt.orderdetails.quantity >= 5);

Creating a cache group

Defining Cache Groups 4-23

Figure 4–9 Multiple-table user managed cache group

Only customers in the West region who ordered at least 5 of the same item are cached.

The Oracle user with the same name as the TimesTen cache manager user must be
granted the SELECT privilege on the oratt.active_customer, oratt.ordertab,
oratt.cust_interests, and oratt.orderdetails tables in order for the cache
manager user to create a user managed cache group that caches all of these tables. This
Oracle user must also be granted the INSERT, UPDATE and DELETE privileges on the
oratt.active_customer and oratt.ordertab tables for synchronous
writethrough operations to occur from these TimesTen cache tables to the cached
Oracle tables.

Each cache table in the western_customers cache group contains a primary key.
Each child table references a parent table with a foreign key constraint. The
oratt.active_customer root table and the oratt.orderdetails child table
each contain a WHERE clause to restrict the rows to be cached. The oratt.active_
customer root table and the oratt.ordertab child table both use the
PROPAGATE cache table attribute so that committed updates on these cache tables
are automatically propagated to the cached Oracle tables. The oratt.cust_

Oracle Database

Data for all customers

active_customer

ordertab

cust_interests

order_details

active_customer (root table)

orderid custid

ordertab

orderid itemid quantity

orderdetails

cust_interests
custid interest

addr zipnamecustid

User managed cache group western_customers

TimesTen

region

Creating a cache group

4-24 Oracle In-Memory Database Cache User's Guide

interests child table uses the READONLY cache table attribute so that it cannot be
updated directly.

PROPAGATE cache table attribute
The PROPAGATE cache table attribute can be specified only for cache tables in a user
managed cache group. PROPAGATE specifies that committed updates on the TimesTen
cache table are automatically and synchronously propagated to the cached Oracle
table such that:

1. The commit is first attempted in the Oracle database. If the commit fails in Oracle,
the commit is not attempted in the TimesTen database and the application must
roll back the TimesTen transaction. As a result, the Oracle database never misses
updates committed in TimesTen.

2. If the commit succeeds in the Oracle database, it is then attempted in the TimesTen
database. If the commit fails in TimesTen, an error message is returned from
TimesTen indicating the cause of the failure. You then need to manually
resynchronize the cache tables with the Oracle tables.

See "Synchronous writethrough (SWT) cache group" on page 4-17 for information
on how to resynchronize the cache tables with the Oracle tables.

By default, a cache table in a user managed cache group is created with the NOT
PROPAGATE cache table attribute such that committed updates on the cache table are
not propagated to the cached Oracle table.

When a cache table uses the PROPAGATE cache table attribute, you may occasionally
need to commit updates on the cache table that you do not want propagated to the
cached Oracle table. Use the ttCachePropagateFlagSet built-in procedure to
disable automatic propagation so that committed updates on a cache table is not
propagated to the cached Oracle table.

The following restrictions apply when using the PROPAGATE cache table attribute:

■ If the cache group uses the AUTOREFRESH cache group attribute, the PROPAGATE
cache table attribute must be specified on all or none of its cache tables.

See "AUTOREFRESH cache group attribute" on page 4-25 for more information
about using the AUTOREFRESH cache group attribute.

■ If the cache group uses the AUTOREFRESH cache group attribute, the NOT
PROPAGATE cache table attribute cannot be explicitly specified on any of its cache
tables.

■ You cannot use both the PROPAGATE and READONLY cache table attributes on the
same cache table.

See "READONLY cache table attribute" on page 4-25 for more information about
using the READONLY cache table attribute.

■ A FLUSH CACHE GROUP statement cannot be issued on the cache group unless
one or more of its cache tables use neither the PROPAGATE nor the READONLY
cache table attribute.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement.

■ After the PROPAGATE cache table attribute has been specified on a cache table, you
cannot change this attribute unless you drop the cache group and re-create it.

■ The PROPAGATE cache table attribute cannot be used when caching Oracle
materialized views.

Creating a cache group

Defining Cache Groups 4-25

■ TimesTen does not perform a conflict check to prevent a propagate operation from
overwriting data that was updated directly on a cached Oracle table. Therefore,
updates should only be performed directly on the TimesTen cache tables or the
cached Oracle tables, but not both.

In Example 4–7, the oratt.active_customer cache table uses the PROPAGATE
cache table attribute.

READONLY cache table attribute
The READONLY cache table attribute can be specified only for cache tables in a user
managed cache group. READONLY specifies that the cache table cannot be updated
directly. By default, a cache table in a user managed cache group is updatable.

Unlike a read-only cache group where all of its cache tables are read-only, in a user
managed cache group individual cache tables can be specified as read-only using the
READONLY cache table attribute.

The following restrictions apply when using the READONLY cache table attribute:

■ If the cache group uses the AUTOREFRESH cache group attribute, the READONLY
cache table attribute must be specified on all or none of its cache tables.

See "AUTOREFRESH cache group attribute" on page 4-25 for more information
about using the AUTOREFRESH cache group attribute.

■ You cannot use both the READONLY and PROPAGATE cache table attributes on the
same cache table.

See "PROPAGATE cache table attribute" on page 4-24 for more information about
using the PROPAGATE cache table attribute.

■ A FLUSH CACHE GROUP statement cannot be issued on the cache group unless
one or more of its cache tables use neither the READONLY nor the PROPAGATE
cache table attribute.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement.

■ After the READONLY cache table attribute has been specified on a cache table, you
cannot change this attribute unless you drop the cache group and re-create it.

In Example 4–8, the oratt.cust_interests cache table uses the READONLY cache
table attribute.

AUTOREFRESH cache group attribute
The AUTOREFRESH cache group attribute can be specified when creating a read-only
cache group or a user managed cache group using a CREATE CACHE GROUP
statement. AUTOREFRESH specifies that committed updates on cached Oracle tables
are automatically refreshed to the TimesTen cache tables. Autorefresh is defined by
default on read-only cache groups.

The following are the default settings of the autorefresh attributes:

■ The autorefresh mode is incremental.

■ The autorefresh interval is 5 minutes.

■ The autorefresh state is PAUSED.

TimesTen supports two autorefresh modes:

Creating a cache group

4-26 Oracle In-Memory Database Cache User's Guide

■ INCREMENTAL: Committed updates on cached Oracle tables are automatically
refreshed to the TimesTen cache tables based on the cache group's autorefresh
interval. Incremental autorefresh mode uses Oracle objects to track committed
updates on cached Oracle tables. See "Managing a caching environment with
Oracle objects" on page 7-8 for information on these objects.

■ FULL: All cache tables are automatically refreshed, based on the cache group's
autorefresh interval, by unloading all their rows and then reloading from the
cached Oracle tables.

Incremental autorefresh mode incurs some overhead to refresh the cache group for
each committed update on the cached Oracle tables. There is no overhead when using
full autorefresh mode.

When using incremental autorefresh mode, committed updates on cached Oracle
tables are tracked in change log tables in the Oracle database. Under certain
circumstances, it is possible for some of the change log records to be deleted from the
change log table before they are automatically refreshed to the TimesTen cache tables.
If this occurs, TimesTen initiates a full automatic refresh on the cache group. See
"Monitoring the cache administration user's tablespace" on page 7-15 for information
on how to configure an action to take when the tablespace that the change log tables
reside in becomes full.

The change log table on the Oracle database does not have column-level resolution
because of performance reasons. Thus the autorefresh operation updates all of the
columns in a row. XLA reports that all of the columns in the row have changed even if
the data did not actually change in each column.

The autorefresh interval determines how often autorefresh operations occur in
minutes, seconds or milliseconds. Cache groups with the same autorefresh interval are
refreshed within the same transaction. You can use the ttCacheAutorefresh
built-in procedure to initiate an immediate autorefresh operation. For more
information, see "ttCacheAutorefresh" in Oracle TimesTen In-Memory Database Reference.

The autorefresh state can be set to ON, PAUSED or OFF. Autorefresh operations are
scheduled by TimesTen when the cache group's autorefresh state is ON.

When the cache group's autorefresh state is OFF, committed updates on the cached
Oracle tables are not tracked.

When the cache group's autorefresh state is PAUSED, committed updates on the cached
Oracle tables are tracked in the Oracle database, but are not automatically refreshed to
the TimesTen cache tables until the state is changed to ON.

The following restrictions apply when using the AUTOREFRESH cache group attribute:

■ A FLUSH CACHE GROUP statement cannot be issued on the cache group.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement.

■ A TRUNCATE TABLE statement issued on a cached Oracle table is not
automatically refreshed to the TimesTen cache table. Before issuing a TRUNCATE
TABLE statement on a cached Oracle table, use an ALTER CACHE GROUP
statement to change the autorefresh state of the cache group that contains the
cache table to PAUSED.

See "Altering a cache group to change the AUTOREFRESH mode, interval or state"
on page 4-27 for more information about the ALTER CACHE GROUP statement.

After issuing the TRUNCATE TABLE statement on the cached Oracle table, use a
REFRESH CACHE GROUP statement to manually refresh the cache group.

Creating a cache group

Defining Cache Groups 4-27

■ A LOAD CACHE GROUP statement can only be issued if the cache tables are empty,
unless the cache group is dynamic.

See "Loading and refreshing a cache group" on page 5-2 for more information
about the LOAD CACHE GROUP and REFRESH CACHE GROUP statements.

See "Dynamic cache groups" on page 4-40 for more information about dynamic
cache groups.

■ The autorefresh state must be PAUSED before you can issue a LOAD CACHE
GROUP statement on the cache group, unless the cache group is dynamic, in which
case the autorefresh state must be PAUSED or ON. The LOAD CACHE GROUP
statement cannot contain a WHERE clause, unless the cache group is dynamic, in
which case the WHERE clause must be followed by a COMMIT EVERY n ROWS
clause.

See "Using a WHERE clause" on page 4-29 for more information about WHERE
clauses in cache group definitions and operations.

■ The autorefresh state must be PAUSED before you can issue a REFRESH CACHE
GROUP statement on the cache group. The REFRESH CACHE GROUP statement
cannot contain a WHERE clause.

■ All tables and columns referenced in WHERE clauses when creating, loading or
unloading the cache group must be fully qualified. For example:

user_name.table_name and user_name.table_name.column_name

■ To use the AUTOREFRESH cache group attribute in a user managed cache group,
all of the cache tables must be specified with the PROPAGATE cache table attribute
or all of the cache tables must be specified the READONLY cache table attribute.

■ You cannot specify the AUTOREFRESH cache group attribute in a user managed
cache group that contains cache tables that explicitly use the NOT PROPAGATE
cache table attribute.

■ The AUTOREFRESH cache table attribute cannot be used when caching Oracle
materialized views in a user managed cache group.

■ LRU aging cannot be specified on the cache group, unless the cache group is
dynamic where LRU aging is defined by default.

See "LRU aging" on page 4-35 for more information about LRU aging.

If you create a unique index on a cache group with the AUTOREFRESH cache group
attribute, the index is changed to a non-unique index to avoid a constraint violation. A
constraint violation could occur with a unique index because conflicting updates could
occur in the same statement execution on the Oracle table, while each row update is
executed separately in TimesTen. If the unique index exists on the Oracle table that is
being cached, then uniqueness is enforced on the Oracle table and does not need to be
verified again in TimesTen.

In Example 4–7, the update_anywhere_customers cache group uses the
AUTOREFRESH cache group attribute.

Altering a cache group to change the AUTOREFRESH mode, interval or state
After creating an autorefresh cache group, you can use an ALTER CACHE GROUP
statement to change the cache group's autorefresh mode, interval or state. You cannot
use ALTER CACHE GROUP to instantiate automatic refresh for a cache group that was
originally created without autorefresh defined.

Creating a cache group

4-28 Oracle In-Memory Database Cache User's Guide

If you change a cache group's autorefresh state to OFF or drop a cache group that has
an autorefresh operation in progress:

■ The autorefresh operation stops if the setting of the LockWait connection
attribute is greater than 0. The ALTER CACHE GROUP or DROP CACHE GROUP
statement preempts the autorefresh operation.

■ The autorefresh operation continues if the LockWait connection attribute is set to
0. The ALTER CACHE GROUP or DROP CACHE GROUP statement is blocked until
the autorefresh operation completes or the statement fails with a lock timeout
error.

Example 4–9 Altering the autorefresh attributes of a cache group

The following statements change the autorefresh mode, interval and state of the
customer_orders cache group:

ALTER CACHE GROUP customer_orders SET AUTOREFRESH MODE FULL;
ALTER CACHE GROUP customer_orders SET AUTOREFRESH INTERVAL 30 SECONDS;
ALTER CACHE GROUP customer_orders SET AUTOREFRESH STATE ON;

Manually creating Oracle objects for autorefresh cache groups
If you manually created the Oracle objects used to enforce the predefined behaviors of
an autorefresh cache group as described in "Manually create Oracle objects used to
manage caching of Oracle data" on page 3-10, you need to set the autorefresh state to
OFF when creating the cache group.

Then you need to run the ttIsql utility's cachesqlget command with the
INCREMENTAL_AUTOREFRESH option and the INSTALL flag as the cache manager
user. This command generates a SQL*Plus script used to create a log table and a
trigger in the Oracle database for each Oracle table that is cached in the autorefresh
cache group. These Oracle objects are used to track updates on the cached Oracle
tables so that the updates can be automatically refreshed to the cache tables.

Next use SQL*Plus to run the script generated by the ttIsql utility's cachesqlget
command as the sys user. Then use an ALTER CACHE GROUP statement to change
the autorefresh state of the cache group to PAUSED.

Example 4–10 Creating a read-only cache group when Oracle objects were manually
created

The first statement creates a read-only cache group customer_orders with the
autorefresh state set to OFF. The SQL*Plus script generated by the ttIsql utility's
cachesqlget command is saved to the /tmp/obj.sql file. The last statement
changes the autorefresh state of the cache group to PAUSED.

CREATE READONLY CACHE GROUP customer_orders
AUTOREFRESH STATE OFF
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num)),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),

Creating a cache group

Defining Cache Groups 4-29

 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num));

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> cachesqlget INCREMENTAL_AUTOREFRESH customer_orders INSTALL /tmp/obj.sql;
Command> exit

% sqlplus sys as sysdba
Enter password: password
SQL> @/tmp/obj
SQL> exit

ALTER CACHE GROUP customer_orders SET AUTOREFRESH STATE PAUSED;

Using a WHERE clause
A cache table definition in a CREATE CACHE GROUP statement can contain a WHERE
clause to restrict the rows to cache in the TimesTen database for particular cache group
types.

You can also specify a WHERE clause in a LOAD CACHE GROUP, UNLOAD CACHE
GROUP, REFRESH CACHE GROUP or FLUSH CACHE GROUP statement for particular
cache group types. Some statements, such as LOAD CACHE GROUP and REFRESH
CACHE GROUP, may result in concatenated WHERE clauses in which the WHERE clause
for the cache table definition is evaluated before the WHERE clause in the LOAD CACHE
GROUP or REFRESH CACHE GROUP statement.

The following restrictions apply to WHERE clauses used in cache table definitions and
cache group operations:

■ WHERE clauses can only be specified in the cache table definitions of a CREATE
CACHE GROUP statement for read-only and user managed cache groups.

■ A WHERE clause can be specified in a LOAD CACHE GROUP statement except on an
explicitly loaded autorefresh cache group.

See "Loading and refreshing a cache group" on page 5-2 for more information
about the LOAD CACHE GROUP statement.

■ A WHERE clause can be specified in a REFRESH CACHE GROUP statement except
on an autorefresh cache group.

See "Loading and refreshing a cache group" on page 5-2 for more information
about the REFRESH CACHE GROUP statement.

■ A WHERE clause can be specified in a FLUSH CACHE GROUP statement on a user
managed cache group that allows committed updates on the TimesTen cache
tables to be flushed to the cached Oracle tables.

See "Flushing a user managed cache group" on page 5-16 for more information
about the FLUSH CACHE GROUP statement.

■ WHERE clauses in a CREATE CACHE GROUP statement cannot contain a subquery.
Therefore, each WHERE clause cannot reference any table other than the one in its
cache table definition. However, a WHERE clause in a LOAD CACHE GROUP,
UNLOAD CACHE GROUP, REFRESH CACHE GROUP or FLUSH CACHE GROUP
statement may contain a subquery.

■ A WHERE clause in a LOAD CACHE GROUP, REFRESH CACHE GROUP or FLUSH
CACHE GROUP statement can reference only the root table of the cache group,
unless the WHERE clause contains a subquery.

Creating a cache group

4-30 Oracle In-Memory Database Cache User's Guide

■ WHERE clauses in the cache table definitions are only enforced when the cache
group is manually loaded or refreshed, or the cache tables are dynamically loaded.
If a cache table is updatable, you can insert or update a row such that the WHERE
clause in the cache table definition for that row is not satisfied.

■ All tables and columns referenced in WHERE clauses when creating, loading,
refreshing, unloading or flushing the cache group must be fully qualified. For
example:

user_name.table_name and user_name.table_name.column_name

In Example 4–8, both the oratt.active_customer and oratt.orderdetails
tables contain a WHERE clause.

Proper placement of WHERE clause in a CREATE CACHE GROUP statement
In a multiple-table cache group, a WHERE clause in a particular table definition should
not reference any table in the cache group other than the table itself. For example, the
following CREATE CACHE GROUP statements are valid:

CREATE READONLY CACHE GROUP customer_orders
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num))
 WHERE (oratt.customer.cust_num < 100),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num));

CREATE READONLY CACHE GROUP customer_orders
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num)),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num));
 WHERE (oratt.orders.cust_num < 100)

The following statement is not valid because the WHERE clause in the child table's
definition references its parent table:

CREATE READONLY CACHE GROUP customer_orders
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),

Creating a cache group

Defining Cache Groups 4-31

 PRIMARY KEY(cust_num)),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num))
 WHERE (oratt.customer.cust_num < 100);

Similarly, the following statement is not valid because the WHERE clause in the parent
table's definition references its child table:

CREATE READONLY CACHE GROUP customer_orders
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num))
 WHERE (oratt.orders.cust_num < 100),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num));

Referencing Oracle PL/SQL functions in a WHERE clause
A user-defined PL/SQL function in the Oracle database can be invoked indirectly in a
WHERE clause within a CREATE CACHE GROUP, LOAD CACHE GROUP, or REFRESH
CACHE GROUP (for dynamic cache groups only) statement. After creating the function,
create a public synonym for the function. Then grant the EXECUTE privilege on the
function to PUBLIC.

For example, in the Oracle database:

CREATE OR REPLACE FUNCTION get_customer_name
(c_num oratt.customer.cust_num%TYPE) RETURN VARCHAR2 IS
c_name oratt.customer.name%TYPE;
BEGIN
 SELECT name INTO c_name FROM oratt.customer WHERE cust_num = c_num;
 RETURN c_name;
END get_customer_name;

CREATE PUBLIC SYNONYM retname FOR get_customer_name;
GRANT EXECUTE ON get_customer_name TO PUBLIC;

Then in the TimesTen database, for example, you can create a cache group with a
WHERE clause that references the Oracle public synonym that was created for the
function:

CREATE READONLY CACHE GROUP top_customer
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num))

Creating a cache group

4-32 Oracle In-Memory Database Cache User's Guide

WHERE name = retname(100);

For cache group types that allow a WHERE clause on a LOAD CACHE GROUP or
REFRESH CACHE GROUP statement, you can invoke the function indirectly by
referencing the public synonym that was created for the function. For example, you
can use the following LOAD CACHE GROUP statement to load the AWT cache group
new_customers:

LOAD CACHE GROUP new_customers WHERE name = retname(101) COMMIT EVERY 0 ROWS;

ON DELETE CASCADE cache table attribute
The ON DELETE CASCADE cache table attribute can be specified for cache tables in
any cache group type. ON DELETE CASCADE specifies that when rows containing
referenced key values are deleted from a parent table, rows in child tables with
dependent foreign keys are also deleted.

Example 4–11 Using the ON DELETE CASCADE cache table attribute

The following statement uses the ON DELETE CASCADE cache table attribute on the
child table's foreign key definition:

CREATE READONLY CACHE GROUP customer_orders
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num)),
oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num) ON DELETE CASCADE);

All paths from a parent table to a child table must be either "delete" paths or "do not
delete" paths. There cannot be some "delete" paths and some "do not delete" paths
from a parent table to a child table. Specify the ON DELETE CASCADE cache table
attribute for child tables on a "delete" path.

The following restrictions apply when using the ON DELETE CASCADE cache table
attribute:

■ For AWT and SWT cache groups, and for TimesTen cache tables in user managed
cache groups that use the PROPAGATE cache table attribute, foreign keys in cache
tables that use the ON DELETE CASCADE cache table attribute must be a proper
subset of the foreign keys in the cached Oracle tables that use the ON DELETE
CASCADE attribute. ON DELETE CASCADE actions on the cached Oracle tables are
applied to the TimesTen cache tables as individual deletes. ON DELETE CASCADE
actions on the cache tables are applied to the cached Oracle tables as a cascaded
operation.

■ Matching of foreign keys between the TimesTen cache tables and the cached
Oracle tables is enforced only when the cache group is being created. A cascade
delete operation may not work if the foreign keys on the cached Oracle tables are
altered after the cache group is created.

Caching Oracle LOB data

Defining Cache Groups 4-33

See the CREATE CACHE GROUP statement in Oracle TimesTen In-Memory Database SQL
Reference for more information about the ON DELETE CASCADE cache table attribute.

UNIQUE HASH ON cache table attribute
The UNIQUE HASH ON cache table attribute can be specified for cache tables in any
cache group type. UNIQUE HASH ON specifies that a hash index rather than a range
index is created on the primary key columns of the cache table. The columns specified
in the hash index must be identical to the columns in the primary key. The UNIQUE
HASH ON cache table attribute is also used to specify the size of the hash index.

Example 4–12 Using the UNIQUE HASH ON cache table attribute

The following statement uses the UNIQUE HASH ON cache table attribute on the cache
table's definition.

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP new_customers
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num))
 UNIQUE HASH ON (cust_num) PAGES = 100;

See the CREATE CACHE GROUP statement in Oracle TimesTen In-Memory Database SQL
Reference for more information about the UNIQUE HASH ON cache table attribute.

Caching Oracle synonyms
You can cache a private synonym in an AWT, SWT or user managed cache group that
does not use the AUTOREFRESH cache group attribute. The private synonym can
reference a public or private synonym, but it must eventually reference a table because
it is the table that is actually being cached.

The table that is directly or indirectly referenced by the cached synonym can be owned
by a user other than the Oracle user with the same name as the owner of the cache
group that caches the synonym. The table must reside in the same Oracle database as
the synonym. The cached synonym itself must be owned by the Oracle user with the
same name as the owner of the cache group that caches the synonym.

Caching Oracle LOB data
You can cache Oracle large object (LOB) data in TimesTen cache groups. TimesTen
caches the data as follows:

■ Oracle CLOB data is cached as TimesTen VARCHAR2 data.

■ Oracle BLOB data is cached as TimesTen VARBINARY data.

■ Oracle NCLOB data is cached as TimesTen NVARCHAR2 data.

Example 4–13 Caching Oracle LOB data

Create a table in the Oracle database that has LOB fields.

CREATE TABLE t (
 i INT NOT NULL PRIMARY KEY
 , c CLOB

Caching Oracle LOB data

4-34 Oracle In-Memory Database Cache User's Guide

 , b BLOB
 , nc NCLOB);

Insert values into the Oracle table. The values are implicitly converted to LOB data
types.

INSERT INTO t VALUES (1
 , RPAD('abcdefg8', 2048, 'abcdefg8')
 , HEXTORAW(RPAD('123456789ABCDEF8', 4000, '123456789ABCDEF8'))
 , RPAD('abcdefg8', 2048, 'abcdefg8')
);

1 row inserted.

Create a dynamic AWT cache group and start the replication agent.

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP cg1
 FROM t
 (i INT NOT NULL PRIMARY KEY
 , c VARCHAR2(4194304 BYTE)
 , b VARBINARY(4194304)
 , nc NVARCHAR2(2097152));

CALL ttrepstart;

Load the data dynamically into the TimesTen cache group.

SELECT * FROM t WHERE i = 1;

I: 1
C: abcdefg8abcdefg8abcdefg8...
B: 123456789ABCDEF8123456789...
NC: abcdefg8abcdefg8abcdefg8...

1 row found.

Restrictions on caching Oracle LOB data
These restrictions apply to caching Oracle LOB data in TimesTen cache groups:

■ Column size is enforced when a cache group is created. VARBINARY, VARCHAR2
and NVARCHAR2 data types have a size limit of 4 megabytes. Values that exceed
the user-defined column size are truncated at run time without notification.

■ Empty values in fields with CLOB and BLOB data types are initialized but not
populated with data. Empty CLOB and BLOB fields are treated as follows:

– Empty LOB fields in the Oracle database are returned as NULL values.

– Empty BLOB fields are loaded into the TimesTen cache as NULL values.

– Empty VARCHAR2 and VARBINARY fields in the TimesTen cache are
propagated as NULL values.

In addition, cache groups that are configured for autorefresh operations have these
restrictions on caching LOB data:

■ When LOB data is updated in the Oracle database by OCI functions or the DBMS_
LOB PL/SQL package, the data is not automatically refreshed in the TimesTen
cache group. This occurs because TimesTen caching depends on Oracle triggers,
and Oracle triggers are not executed when these types of updates occur. TimesTen
does not notify the user that updates have occurred without being refreshed in

Implementing aging in a cache group

Defining Cache Groups 4-35

TimesTen. When the LOB is updated through a SQL statement, a trigger is fired
and autorefresh brings in the change.

■ Autorefresh operations update a complete row in the TimesTen cache. Thus, the
cached LOB data may appear to be updated in TimesTen when no change has
occurred in the LOB data in the Oracle database.

Implementing aging in a cache group
You can define an aging policy for a cache group that specifies the aging type, the
aging attributes, and the aging state. TimesTen supports two aging types, least
recently used (LRU) aging and time-based aging.

LRU aging deletes the least recently used or referenced data based on a specified
database usage range. Time-based aging deletes data based on a specified data lifetime
and frequency of the aging process. You can use both LRU and time-based aging in the
same TimesTen database, but you can define only one aging policy for a particular
cache group.

An aging policy is specified in the cache table definition of the root table in a CREATE
CACHE GROUP statement and applies to all cache tables in the cache group because
aging is performed at the cache instance level. When rows are deleted from the cache
tables by aging out, the rows in the cached Oracle table are not deleted.

You can add an aging policy to a cache group by using an ALTER TABLE statement on
the root table. You can change the aging policy of a cache group by using ALTER
TABLE statements on the root table to drop the existing aging policy and then add a
new aging policy.

This section describes cache group definitions that contain an aging policy. The topics
include:

■ LRU aging

■ Time-based aging

■ Manually scheduling an aging process

■ Configuring a sliding window

LRU aging
LRU aging enables you to maintain the amount of memory used in a TimesTen
database within a specified threshold by deleting the least recently used data. LRU
aging can be defined for all cache group types except explicitly loaded autorefresh
cache groups. LRU aging is defined by default on dynamic cache groups.

Define an LRU aging policy for a cache group by using the AGING LRU clause in the
cache table definition of the CREATE CACHE GROUP statement. Aging occurs
automatically if the aging state is set to its default of ON.

Example 4–14 Defining an LRU aging policy on a cache group

The following statement defines an LRU aging policy on the AWT cache group new_
customers:

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP new_customers
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),

Implementing aging in a cache group

4-36 Oracle In-Memory Database Cache User's Guide

 address VARCHAR2(100),
 PRIMARY KEY(cust_num))
AGING LRU ON;

Use the ttAgingLRUConfig built-in procedure to set the LRU aging attributes as a
user with the ADMIN privilege. The attribute settings apply to all tables in the
TimesTen database that have an LRU aging policy defined and an aging state of ON.

The following are the LRU aging attributes:

■ LowUsageThreshold: The TimesTen database's space usage (the ratio of the
permanent partition's in-use size over the partition's allocated size) at or below
which LRU aging is deactivated. The default low usage threshold is .8 (80 percent).

■ HighUsageThreshold: The TimesTen database's space usage above which LRU
aging is activated. The default high usage threshold is .9 (90 percent).

■ AgingCycle: The frequency in which aging occurs, in minutes. The default aging
cycle is 1 minute.

Example 4–15 Setting the LRU aging attributes

The following procedure call specifies that the aging process checks every 5 minutes to
see if the TimesTen database's permanent partition space usage is above 95 percent. If
it is, the least recently used data is automatically aged out or deleted until the space
usage is at or below 75 percent.

CALL ttAgingLRUConfig(.75, .95, 5);

If you set a new value for AgingCycle after an LRU aging policy has been defined on
a cache group, the next time aging occurs is based on the current system time and the
new aging cycle. For example, if the original aging cycle was 15 minutes and LRU
aging occurred 10 minutes ago, aging is expected to occur again in 5 minutes.
However, if you change the aging cycle to 30 minutes, aging next occurs 30 minutes
from the time you call ttAgingLRUConfig with the new aging cycle setting.

If a row has been accessed or referenced since the last aging cycle, it is not eligible for
LRU aging in the current aging cycle. A row is considered to be accessed or referenced
if at least one of the following is true:

■ The row is used to build the result set of a SELECT or an INSERT ... SELECT
statement.

■ The row has been marked to be updated or deleted in a pending transaction.

In a multiple-table cache group, if a row in a child table has been accessed or
referenced since the last aging cycle, then neither the related row in the parent table
nor the row in the child table is eligible for LRU aging in the current aging cycle.

The ALTER TABLE statement can be used to perform the following tasks associated
with changing or defining an LRU aging policy on a cache group:

■ Change the aging state of a cache group by specifying the root table and using the
SET AGING clause.

■ Add an LRU aging policy to a cache group that has no aging policy defined by
specifying the root table and using the ADD AGING LRU clause.

■ Drop the LRU aging policy on a cache group by specifying the root table and
using the DROP AGING clause.

To change the aging policy of a cache group from LRU to time-based, use an ALTER
TABLE statement on the root table with the DROP AGING clause to drop the LRU aging

Implementing aging in a cache group

Defining Cache Groups 4-37

policy. Then use an ALTER TABLE statement on the root table with the ADD AGING
USE clause to add a time-based aging policy.

You must stop the cache agent before you add, alter or drop an aging policy on an
autorefresh cache group.

Time-based aging
Time-based aging deletes data from a cache group based on the aging policy's
specified data lifetime and frequency. Time-based aging can be defined for all cache
group types.

Define a time-based aging policy for a cache group by using the AGING USE clause in
the cache table definition of the CREATE CACHE GROUP statement. Aging occurs
automatically if the aging state is set to its default of ON.

The definitions of the Oracle tables that will be cached in the AWT cache group
defined in Example 4–17 are defined in Example 4–16. The Oracle tables are owned by
the schema user oratt. The oratt user must be granted the CREATE SESSION and
RESOURCE privileges before it can create tables.

Example 4–16 Oracle table definitions

CREATE TABLE orders
(ord_num NUMBER(10) NOT NULL PRIMARY KEY,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL);

CREATE TABLE order_item
(orditem_id NUMBER(12) NOT NULL PRIMARY KEY,
 ord_num NUMBER(10),
 prod_num VARCHAR2(6),
 quantity NUMBER(3));

The Oracle user with the same name as the TimesTen cache manager user must be
granted the SELECT privilege on the oratt.orders and oratt.order_item tables
in order for the cache manager user to create an AWT cache group that caches these
tables. The Oracle cache administration user must be granted the INSERT, UPDATE
and DELETE privileges on the oratt.orders and oratt.order_item tables for
asynchronous writethrough operations to occur from the TimesTen cache tables to the
cached Oracle tables.

Example 4–17 Defining a time-based aging policy on a cache group

The following statement defines a time-based aging policy on the AWT cache group
ordered_items:

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP ordered_items
FROM oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num))
AGING USE when_placed LIFETIME 45 DAYS CYCLE 60 MINUTES ON,
oratt.order_item
 (orditem_id NUMBER(12) NOT NULL,
 ord_num NUMBER(10),
 prod_num VARCHAR2(6),

Implementing aging in a cache group

4-38 Oracle In-Memory Database Cache User's Guide

 quantity NUMBER(3),
 PRIMARY KEY(orditem_id),
 FOREIGN KEY(ord_num) REFERENCES oratt.orders(ord_num));

Cache instances that are greater than 45 days old based on the difference between the
current system timestamp and the timestamp in the when_placed column of the
oratt.orders table are candidates for aging. The aging process checks every 60
minutes to see if there are cache instances that can be automatically aged out or
deleted from the cache tables.

The AGING USE clause requires the name of a non-nullable TIMESTAMP or DATE
column used for time-based aging. We refer to this column as the timestamp column.

For each row, the value in the timestamp column stores the date and time when the
row was most recently inserted or updated. The values in the timestamp column is
maintained by your application. If the value of this column is unknown for particular
rows and you do not want those rows to be aged out of the table, define the timestamp
column with a large default value.

You can create an index on the timestamp column to optimize performance of the
aging process.

You cannot add a column to an existing table and then use that column as the
timestamp column because added columns cannot be defined as non-nullable. You
cannot drop the timestamp column from a table that has a time-based aging policy
defined.

Specify the lifetime in days, hours, minutes or seconds after the LIFETIME keyword in
the AGING USE clause.

The value in the timestamp column is subtracted from the current system timestamp.
The result is then truncated to the specified lifetime unit (day, hour, minute, second)
and compared with the specified lifetime value. If the result is greater than the lifetime
value, the row is a candidate for aging.

After the CYCLE keyword, specify the frequency in which aging occurs in days, hours,
minutes or seconds. The default aging cycle is 5 minutes. If you specify an aging cycle
of 0, aging is continuous.

The ALTER TABLE statement can be used to perform the following tasks associated
with changing or defining a time-based aging policy on a cache group:

■ Change the aging state of a cache group by specifying the root table and using the
SET AGING clause.

■ Change the lifetime by specifying the root table and using the SET AGING
LIFETIME clause.

■ Change the aging cycle by specifying the root table and using the SET AGING
CYCLE clause.

■ Add a time-based aging policy to a cache group that has no aging policy defined
by specifying the root table and using the ADD AGING USE clause.

■ Drop the time-based aging policy on a cache group by specifying the root table
and using the DROP AGING clause.

To change the aging policy of a cache group from time-based to LRU, use an ALTER
TABLE statement on the root table with the DROP AGING clause to drop the
time-based aging policy. Then use an ALTER TABLE statement on the root table with
the ADD AGING LRU clause to add an LRU aging policy.

Implementing aging in a cache group

Defining Cache Groups 4-39

You must stop the cache agent before you add, alter or drop an aging policy on an
autorefresh cache group.

Manually scheduling an aging process
Use the ttAgingScheduleNow built-in procedure to manually start a one-time aging
process on a specified table or on all tables that have an aging policy defined. The
aging process starts as soon as you call the procedure unless there is already an aging
process in progress. Otherwise the manually started aging process begins when the
aging process that is in progress has completed. After the manually started aging
process has completed, the start of the table's next aging cycle is set to the time when
ttAgingScheduleNow was called if the table's aging state is ON.

Example 4–18 Starting a one-time aging process

The following procedure call starts a one-time aging process on the oratt.orders
table based on the time ttAgingScheduleNow is called:

CALL ttAgingScheduleNow('oratt.orders');

Rows in the oratt.orders root table that are candidates for aging are deleted as
well as related rows in the oratt.order_item child table.

When you call ttAgingScheduleNow, the aging process starts regardless of whether
the table's aging state is ON or OFF. If you want to start an aging process on a
particular cache group, specify the name of the cache group's root table when you call
the procedure. If ttAgingScheduleNow is called with no parameters, it starts an
aging process and then resets the start of the next aging cycle on all tables in the
TimesTen database that have an aging policy defined.

Calling ttAgingScheduleNow does not change the aging state of any table. If a
table's aging state is OFF when you call the procedure, the aging process starts, but it is
not scheduled to run again after the process has completed. To continue aging a table
whose aging state is OFF, you must call ttAgingScheduleNow again or change the
table's aging state to ON.

To manually control aging on a cache group, disable aging on the root table by using
an ALTER TABLE statement with the SET AGING OFF clause. Then call
ttAgingScheduleNow to start an aging process on the cache group.

Configuring a sliding window
You can use time-based aging to implement a sliding window for a cache group. In a
sliding window configuration, new rows are inserted into and old rows are deleted
from the cache tables on a regular schedule so that the tables contain only the data that
satisfies a specific time interval.

You can configure a sliding window for a cache group by using incremental
autorefresh mode and defining a time-based aging policy. The autorefresh operation
checks the timestamp of the rows in the cached Oracle tables to determine whether
new data should be refreshed into the TimesTen cache tables. The system time and the
time zone must be identical on the Oracle and TimesTen systems.

If the cache group does not use incremental autorefresh mode, you can configure a
sliding window by using a LOAD CACHE GROUP, REFRESH CACHE GROUP, or
INSERT statement, or a dynamic load operation to bring new data into the cache
tables.

Dynamic cache groups

4-40 Oracle In-Memory Database Cache User's Guide

Example 4–19 Defining a cache group with sliding window properties

The following statement configures a sliding window on the read-only cache group
recent_shipped_orders:

CREATE READONLY CACHE GROUP recent_shipped_orders
AUTOREFRESH MODE INCREMENTAL INTERVAL 1440 MINUTES STATE ON
FROM oratt.orders
 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num))
AGING USE when_shipped LIFETIME 30 DAYS CYCLE 24 HOURS ON;

New data in the oratt.orders cached Oracle table are automatically refreshed into
the oratt.orders TimesTen cache table every 1440 minutes. Cache instances that
are greater than 30 days old based on the difference between the current system
timestamp and the timestamp in the when_shipped column are candidates for aging.
The aging process checks every 24 hours to see if there are cache instances that can be
aged out of the cache tables. Therefore, this cache group stores orders that have been
shipped within the last 30 days.

The autorefresh interval and the lifetime used for aging determine the duration that
particular rows remain in the cache tables. It is possible for data to be aged out of the
cache tables before it has been in the cache tables for its lifetime. For example, for a
read-only cache group if the autorefresh interval is 3 days and the lifetime is 30 days,
data that is already 3 days old when it is refreshed into the cache tables is deleted after
27 days because aging is based on the timestamp stored in the rows of the cached
Oracle tables that gets loaded into the TimesTen cache tables, not when the data is
refreshed into the cache tables.

Dynamic cache groups
The data in a dynamic cache group is loaded on demand. For example, a call center
application may not want to preload all of its customers' information into TimesTen as
it may be very large. Instead it can use a dynamic cache group so that a specific
customer's information is loaded only when needed such as when the customer calls
or logs onto the system.

Any system managed cache group type (read-only, AWT, SWT) can be defined as a
dynamic cache group. A user managed cache group can be defined as a dynamic cache
group unless it uses both the AUTOREFRESH cache group attribute and the
PROPAGATE cache table attribute.

Use the CREATE DYNAMIC CACHE GROUP statement to create a dynamic cache
group.

Example 4–20 Dynamic read-only cache group

This following statement creates a dynamic read-only cache group online_
customers that caches the oratt.customer table:

CREATE DYNAMIC READONLY CACHE GROUP online_customers
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num));

Global cache groups

Defining Cache Groups 4-41

With an explicitly loaded cache group, data is initially loaded into the cache tables
from the cached Oracle tables using a LOAD CACHE GROUP statement. With a
dynamic cache group, data may also be loaded into the cache tables using a LOAD
CACHE GROUP statement. However, with a dynamic cache group, data is typically
loaded automatically when its cache tables are referenced by a SELECT, INSERT, or
UPDATE statement and the data is not found in the tables resulting in a cache miss. See
"Dynamically loading a cache instance" on page 5-10 for more information.

With both explicitly loaded and dynamic cache groups, a LOAD CACHE GROUP
statement loads into their cache tables qualified data that exists in the cached Oracle
tables but not in the TimesTen cache tables. However, if a row exists in a cache table
but a newer version exists in the cached Oracle table, a LOAD CACHE GROUP
statement does not load that row into the cache table even if it satisfies the predicate of
the statement.

By contrast, a REFRESH CACHE GROUP statement reloads qualifying rows that exists
in the cache tables, effectively refreshing the content of the cache. For an explicitly
loaded cache group, the rows that are refreshed are all the rows that satisfy the
predicate of the REFRESH CACHE GROUP statement. However, for a dynamic cache
group, the rows that are refreshed are the ones that satisfy the predicate and already
exist in the cache tables. In other words, rows that end up being refreshed are the ones
that have been updated or deleted in the cached Oracle table, but not the ones that
have been inserted. Therefore, a refresh operation processes only the rows that are
already in the cache tables. No new rows are loaded into the cache tables of a dynamic
cache group as a result of a refresh.

The data in the cache instance of a dynamic read-only cache group is consistent with
the data in the corresponding rows of the Oracle tables. At any instant in time, the data
in a cache instance of an explicitly loaded cache group is consistent with the data in
the corresponding rows of the Oracle tables, taking into consideration the state and the
interval settings for autorefresh.

The data in a dynamic cache group is subject to aging as LRU aging is defined by
default. You can use the ttAgingLRUConfig built-in procedure to override the
default or current LRU aging attribute settings for the aging cycle and TimesTen
database space usage thresholds. Alternatively, you can define time-based aging on a
dynamic cache group to override LRU aging. Rows in a dynamic AWT cache group
must be propagated to Oracle before they become candidates for aging.

Global cache groups
An Oracle table cannot be cached in more than one cache group within the same
TimesTen database. However, the table can be cached in separate cache groups in
different TimesTen databases. If the table is cached in separate AWT cache groups and
the same cache instance is updated simultaneously on multiple TimesTen databases,
there is no guarantee as to the order in which the updates are propagated to the
cached Oracle table. Also, the contents of the updated cache table are inconsistent
between the TimesTen databases.

A TimesTen cache grid prevents this problem by providing users with Oracle
databases a means to horizontally scale out cache groups across multiple systems with
read/write data consistency across the TimesTen databases. A cache grid is a set of
TimesTen databases that collectively manage the application data.

Tables that are cached in separate cache groups within different TimesTen databases
must be cached in global cache groups in order for the cache grid to manage
consistency of the cache instances across the grid members when updates are

Global cache groups

4-42 Oracle In-Memory Database Cache User's Guide

committed on the cache tables of the cache group. In a cache grid, only one copy of a
cache instance is allowed to be present in the entire grid at any moment in time. Each
cache instance in a global cache group is owned by the grid member where it is
currently located. Only the cache grid member that owns the cache instance has the
right to update the data. The TimesTen cache grid tracks the ownership for each cache
instance, so that it can quickly locate the grid member where each cache instance is
currently located and ensure that the same cache instance is not concurrently present
in multiple grid members. However, another grid member can obtain ownership of
the cache instance from the current owner.

Global cache groups can be defined as dynamic AWT cache groups or as explicitly
loaded AWT cache groups.

This section includes the following topics:

■ Dynamic global cache groups

■ Explicitly loaded global cache groups

■ Start the replication agent

■ Attach a TimesTen database to a cache grid

Dynamic global cache groups
The following statement is the definition of the Oracle table that will be cached in the
dynamic AWT global cache group that is created in Example 4–21. The Oracle table is
owned by the schema user oratt. The oratt user must be granted the CREATE
SESSION and RESOURCE privileges before it can create tables.

CREATE TABLE subscriber
(subscriberid NUMBER(10) NOT NULL PRIMARY KEY,
 name VARCHAR2(100) NOT NULL,
 minutes_balance NUMBER(5) NOT NULL,
 last_call_duration NUMBER(4) NOT NULL);

The Oracle user with the same name as the TimesTen cache manager user must be
granted the SELECT privilege on the oratt.subscriber table so that the cache
manager user can create an AWT cache group that caches this table. The Oracle cache
administration user must be granted the INSERT, UPDATE and DELETE privileges on
the oratt.subscriber table for asynchronous writethrough operations to occur
from the TimesTen cache table to the cached Oracle table.

Use the CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH GLOBAL CACHE
GROUP statement to create a dynamic AWT global cache group.

Example 4–21 Dynamic global cache group

The following statement creates a dynamic AWT global cache group subscriber_
accounts that caches the oratt.subscriber table:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH GLOBAL CACHE GROUP subscriber_accounts
FROM oratt.subscriber
 (subscriberid NUMBER(10) NOT NULL PRIMARY KEY,
 name VARCHAR2(100) NOT NULL,
 minutes_balance NUMBER(5) NOT NULL,
 last_call_duration NUMBER(4) NOT NULL);

When a subscriber to a prepaid telephone account makes a call, the cache instance that
contains the subscriber’s account balance is loaded into the oratt.subscriber
cache table of the subscriber_accounts global cache group within one of the cache

Global cache groups

Defining Cache Groups 4-43

grid members. The query for the account balance information first searches the grid
member on which the query is issued. If the cache tables on the local grid member do
not contain data that satisfies a query, then the cache instance is transferred from other
grid members to the local grid member in a grid data transfer operation. If the grid does
not contain the cache instance that satisfies the query, data is loaded from the Oracle
tables. When data is loaded into the local grid member from the Oracle tables, this
operation is called a dynamic load. The grid member that the cache instance is loaded
into becomes the owner of the cache instance. Other grid members cannot access the
cache instance until the owner has updated the balance of minutes and the duration of
the last call, and the committed update has been propagated to the cached Oracle
table.

To ensure consistency among the grid members, an Oracle table that is cached in a
global cache group in a TimesTen database should not also be cached in a local cache
group in another TimesTen database within the same cache grid. In addition, the
Oracle table should not be cached in a global cache group in another TimesTen
database within a different cache grid.

For cache tables in a dynamic global cache group, a particular cache instance can be
read or updated by only one grid member at a time. This grid member is referred to as
the owner of the cache instance. When the owner no longer has a pending transaction
on any row of the cache instance, another grid member can take ownership by reading
or updating that instance. The owner relinquishes ownership of a cache instance when
the instance has been deleted from that grid member as a result of:

■ Aging

■ A DELETE statement issued on the cache table

■ An UNLOAD CACHE GROUP statement issued on the cache group

■ A request from another grid member to take ownership of that instance

The owner relinquishes ownership of all its cache instances if that grid member
detaches from its cache grid.

Read data consistency between nodes of a cache grid is guaranteed only when using
serializable isolation level on the node where cache instances are being read. When
using the default read committed isolation level, a connection on a grid node that is
reading a cache instance may see a data value that has been subsequently updated to a
new value by another connection in the same or a different node.

The cache tables in a dynamic global cache group can be populated using any of these
operations:

■ Dynamic load operation

■ Grid data transfer operation

■ INSERT statement on the cache tables (but not an INSERT INTO ... SELECT
FROM statement)

■ LOAD CACHE GROUP ... COMMIT EVERY n ROWS statement (can only be used
if all the other grid members do not own any of the cache instances to be loaded)

See "Dynamically loading a cache instance" on page 5-10 for information about a
dynamic load operation.

A grid member can take ownership of a cache instance that is currently owned by
another grid member by using any of the following operations:

■ Grid data transfer operation

■ Dynamic load operation

Global cache groups

4-44 Oracle In-Memory Database Cache User's Guide

■ LOAD CACHE GROUP ... WITH ID statement

A REFRESH CACHE GROUP statement can be issued on a dynamic global cache group
only if it contains a WITH ID clause.

You can set the CacheGridMsgWait connection attribute to the maximum number of
seconds that a grid member waits for the owner to relinquish the instance. The owner
cannot relinquish ownership of a cache instance if it has a pending transaction on any
row of the instance. The default maximum wait time is 60 seconds.

An INSERT statement issued on a cache table in a dynamic global cache group fails if
the unique key value in the inserted row already exists in the cached Oracle table.

When using a LOAD CACHE GROUP ... COMMIT EVERY n ROWS statement, if any of
the cache instances to be loaded within a transaction are owned by another grid
member, an error is returned. The transaction is then rolled back and no cache
instances are loaded within the failed transaction.

To prevent conflicts that can occur if you update the same row in a TimesTen cache
table and the cached Oracle table concurrently, update only the cache table. The
cached Oracle table should not be updated directly.

A TimesTen database that is a member of a cache grid can contain local and global
cache groups. Only cache tables in global cache groups are guaranteed to be consistent
among the grid members.

Explicitly loaded global cache groups
Cache instances in an explicitly loaded global cache group are initially loaded from the
Oracle database. You can reload the cache instances by issuing another LOAD CACHE
GROUP statement or reload a single cache instance with the REFRESH CACHE
GROUP...WITH ID statement.

If the cache tables on the local grid member do not contain data that satisfies a query,
then the cache instance is transferred from other grid members to the local grid
member in a grid data transfer operation. If the grid does not contain the cache instance
that satisfies the query, data is not loaded from the Oracle tables. The query returns no
results.

Use the CREATE ASYNCHRONOUS WRITETHROUGH GLOBAL CACHE GROUP
statement to create an explicitly loaded global cache group. Note that this SQL
statement is the same as the SQL statement that creates a dynamic global cache group
except that the DYNAMIC keyword is omitted.

Example 4–22 Creating an explicitly loaded global cache group

The following statement creates an explicitly loaded AWT global cache group
subscriber_accounts that caches the oratt.subscriber table:

CREATE ASYNCHRONOUS WRITETHROUGH GLOBAL CACHE GROUP subscriber_accounts
FROM oratt.subscriber
 (subscriberid NUMBER(10) NOT NULL PRIMARY KEY,
 name VARCHAR2(100) NOT NULL,
 minutes_balance NUMBER(5) NOT NULL,
 last_call_duration NUMBER(4) NOT NULL);

The cache tables in an explicitly loaded global cache group can be populated at any
time using any of these operations:

■ Grid data transfer operation

Global cache groups

Defining Cache Groups 4-45

■ INSERT statement on the cache tables (but not an INSERT INTO ... SELECT
FROM statement)

■ LOAD CACHE GROUP statement. The statement can be used only if other grid
members do not own any of the cache instances to be loaded into the local grid
member.

■ REFRESH CACHE GROUP ... WITH ID statement

Aging is disabled by default on an explicitly loaded global cache group.

Set the CacheGridMsgWait connection attribute to the maximum number of seconds
that a grid member waits for the owner to relinquish the instance. The owner cannot
relinquish ownership of a cache instance if it has a pending transaction on any row of
the instance. The default maximum wait time is 60 seconds.

If a query that specifies a primary key or foreign key is issued on a cache table where
there is no row that satisfies the query, the cache instance is not transferred to the
cache table.

If a row is inserted into a child table whose parent table exists in the cache grid, the
cache instance is transferred to the member with the child table. An insert into a child
table whose parent is not in the cache grid fails.

Start the replication agent
After you have created a global cache group, start the replication agent on the
TimesTen database as the cache manager user, if it is not already running:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> call ttRepStart;
Command> exit

Attach a TimesTen database to a cache grid
All standalone TimesTen databases, and the active and standby databases of an active
standby pair that contain global cache groups must attach to the cache grid that they
are associated with in order to update the cache tables of the global cache groups.
Attaching the databases to the grid allow the databases to become members of the grid
so that cache instances in the cache tables of the global cache groups can maintain
consistency among the databases within the grid.

Example 4–23 Attaching a TimesTen database to a cache grid

Attach the first standalone database to the ttGrid cache grid that it is associated with
by calling the ttGridAttach built-in procedure as the cache manager user. The node
number for a standalone TimesTen database is 1. Calling the ttGridAttach built-in
procedure automatically starts the cache agent on the TimesTen database if it is not
already running.

In this example, alone1 is a name that is used to uniquely identify the grid member,
sys1 is the host name of the TimesTen system where the first standalone database
resides, and 5001 is the TCP/IP port for the first standalone database's cache agent
process:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> call ttGridAttach(1,'alone1','sys1',5001);
Command> exit

Specify a port for the cache agent on each TimesTen database that attaches to the grid.
There is no default port number. A typical grid uses the same port for each member of

Global cache groups

4-46 Oracle In-Memory Database Cache User's Guide

the grid, but different ports can be specified if desired. The port assignment is a grid
member property. The only way to change the properties of a grid member after it has
been attached to the grid is to destroy the grid and re-create it. Use the
ttGridNodeStatus built-in procedure to determine the members of a grid and their
ports.

See "Configuring a cache grid" on page 3-14 for more information about a cache grid.

5

Cache Group Operations 5-1

5Cache Group Operations

This chapter describes operations that can be performed on cache groups. It includes
the following topics:

■ Transmitting updates between the TimesTen and Oracle databases

■ Loading and refreshing a cache group

■ Dynamically loading a cache instance

■ Flushing a user managed cache group

■ Unloading a cache group

■ Setting a passthrough level

■ Cache performance

You can use SQL statements or SQL Developer to perform most of the operations in
this chapter. For more information about SQL Developer, see Oracle SQL Developer
Oracle TimesTen In-Memory Database Support User's Guide.

Transmitting updates between the TimesTen and Oracle databases
You can use the following SQL statements to manually transmit committed updates
between the TimesTen cache tables and the cached Oracle tables:

For AWT, SWT, and user managed cache groups that use the PROPAGATE cache table
attribute, committed updates on the TimesTen cache tables are automatically
propagated to the cached Oracle tables.

See "Asynchronous writethrough (AWT) cache group" on page 4-10 for more
information about AWT cache groups.

See "Synchronous writethrough (SWT) cache group" on page 4-17 for more
information about SWT cache groups.

SQL statement Description

LOAD CACHE GROUP Load cache instances that are not in the TimesTen cache tables
from the cached Oracle tables

REFRESH CACHE GROUP Replace cache instances in the TimesTen cache tables with
current data from the cached Oracle tables

FLUSH CACHE GROUP Propagate committed updates on the TimesTen cache tables to
the cached Oracle tables. Only applicable for user managed
cache groups.

Loading and refreshing a cache group

5-2 Oracle In-Memory Database Cache User's Guide

See "PROPAGATE cache table attribute" on page 4-24 for more information about
using the PROPAGATE cache table attribute on cache tables in a user managed cache
group.

The AUTOREFRESH cache group attribute can be used in a read-only or a user
managed cache group to automatically refresh committed updates on cached Oracle
tables into the TimesTen cache tables. Automatic refresh can be defined on explicitly
loaded or dynamic cache groups.

See "AUTOREFRESH cache group attribute" on page 4-25 for more information about
automatically refreshing a cache group.

Data is manually preloaded into the cache tables of explicitly loaded cache groups. For
dynamic cache groups, data is loaded on demand into the cache tables. A cache
instance is automatically loaded from the cached Oracle tables when a particular
statement does not find the data in the cache tables.

See "Dynamically loading a cache instance" on page 5-10 for more information about a
dynamic load operation.

Dynamic cache groups are typically configured to automatically age out from the
cache tables data that is no longer being used.

Loading and refreshing a cache group
You can manually insert or update cache instances in the TimesTen cache tables from
the cached Oracle tables using either a LOAD CACHE GROUP or REFRESH CACHE
GROUP statement. The differences between loading and refreshing a cache group are:

■ LOAD CACHE GROUP only loads committed inserts on the cached Oracle tables
into the TimesTen cache tables. New cache instances are loaded into the cache
tables, but cache instances that already exist in the cache tables are not updated or
deleted even if the corresponding rows in the cached Oracle tables have been
updated or deleted. A load operation is primarily used to initially populate a
cache group.

■ REFRESH CACHE GROUP replaces cache instances in the TimesTen cache tables
with the most current data from the cached Oracle tables including cache instances
that are already exist in the cache tables. A refresh operation is primarily used to
update the contents of a cache group with committed updates on the cached
Oracle tables after the cache group has been initially populated.

For an explicitly loaded cache group, a refresh operation is equivalent to issuing
an UNLOAD CACHE GROUP statement followed by a LOAD CACHE GROUP
statement on the cache group. In effect, all committed inserts, updates and deletes
on the cached Oracle tables are refreshed into the cache tables. New cache
instances may be loaded into the cache tables. Cache instances that already exist in
the cache tables are updated or deleted if the corresponding rows in the cached
Oracle tables have been updated or deleted. See "Unloading a cache group" on
page 5-17 for more information about the UNLOAD CACHE GROUP statement.

For a dynamic cache group, a refresh operation only refreshes committed updates
and deletes on the cached Oracle tables into the cache tables because only existing
cache instances in the cache tables are refreshed. New cache instances are not
loaded into the cache tables so after the refresh operation completes, the cache
tables will contain either the same or fewer number of cache instances. To load
new cache instances into the cache tables of a dynamic cache group, use a LOAD
CACHE GROUP statement or perform a dynamic load operation. See "Dynamically

Loading and refreshing a cache group

Cache Group Operations 5-3

loading a cache instance" on page 5-10 for more information about a dynamic load
operation.

For most cache group types, you can use a WHERE clause in a LOAD CACHE GROUP or
REFRESH CACHE GROUP statement to restrict the rows to be loaded or refreshed into
the cache tables.

If the cache table definitions use a WHERE clause, only rows that satisfy the WHERE
clause are loaded or refreshed into the cache tables even if the LOAD CACHE GROUP or
REFRESH CACHE GROUP statement does not use a WHERE clause.

A REFRESH CACHE GROUP statement can be issued on a global cache group only if it
contains a WITH ID clause.

If the cache group has a time-based aging policy defined, only cache instances where
the timestamp in the root table's row is within the aging policy's lifetime are loaded or
refreshed into the cache tables.

To prevent a load or refresh operation from processing a large number of cache
instances within a single transaction, which can greatly reduce concurrency and
throughput, use the COMMIT EVERY n ROWS clause to specify a commit frequency
unless you are using the WITH ID clause. If you specify COMMIT EVERY 0 ROWS, the
load or refresh operation is processed in a single transaction.

A LOAD CACHE GROUP or REFRESH CACHE GROUP statement that uses the COMMIT
EVERY n ROWS clause must be performed in its own transaction without any other
operations within the same transaction.

Example 5–1 Loading a cache group

The following statement loads new cache instances into the TimesTen cache tables in
the customer_orders cache group from the cached Oracle tables:

LOAD CACHE GROUP customer_orders COMMIT EVERY 256 ROWS;

Example 5–2 Loading a cache group using a WHERE clause

The following statement loads into the TimesTen cache tables in the new_customers
cache group from the cached Oracle tables, new cache instances for customers whose
customer number is greater than or equal to 5000:

LOAD CACHE GROUP new_customers WHERE (oratt.customer.cust_num >= 5000)
 COMMIT EVERY 256 ROWS;

Example 5–3 Refreshing a cache group

The following statement refreshes cache instances in the TimesTen cache tables within
the top_products cache group from the cached Oracle tables:

REFRESH CACHE GROUP top_products COMMIT EVERY 256 ROWS;

Example 5–4 Refreshing a cache group using a WHERE clause

The following statement refreshes in the TimesTen cache tables within the update_
anywhere_customers cache group from the cached Oracle tables, cache instances of
customers located in zip code 60610:

REFRESH CACHE GROUP update_anywhere_customers
 WHERE (oratt.customer.zip = '60610') COMMIT EVERY 256 ROWS;

For more information, see the LOAD CACHE GROUP and REFRESH CACHE GROUP
statements in Oracle TimesTen In-Memory Database SQL Reference.

Loading and refreshing a cache group

5-4 Oracle In-Memory Database Cache User's Guide

The rest of this section includes these topics:

■ Loading and refreshing an explicitly loaded cache group with autorefresh

■ Loading and refreshing a dynamic cache group with autorefresh

■ Loading and refreshing a cache group using a WITH ID clause

■ Initiating an immediate autorefresh

■ Loading and refreshing a multiple-table cache group

■ Improving the performance of loading or refreshing a large number of cache
instances

■ Example of manually loading and refreshing an explicitly loaded cache group

■ Example of manually loading and refreshing a dynamic cache group

Loading and refreshing an explicitly loaded cache group with autorefresh
If the autorefresh state of an explicitly loaded cache group is PAUSED, the autorefresh
state is changed to ON after a LOAD CACHE GROUP or REFRESH CACHE GROUP
statement issued on the cache group completes.

The following restrictions apply when manually loading or refreshing an explicitly
loaded cache group with autorefresh:

■ A LOAD CACHE GROUP statement can only be issued if the cache tables are empty.

■ The autorefresh state must be PAUSED before you can issue a LOAD CACHE
GROUP statement.

■ The autorefresh state must be PAUSED before you can issue a REFRESH CACHE
GROUP statement.

■ A LOAD CACHE GROUP statement cannot contain a WHERE clause.

■ A LOAD CACHE GROUP or REFRESH CACHE GROUP statement cannot contain a
WITH ID clause.

■ A REFRESH CACHE GROUP statement cannot contain a WHERE clause.

■ All tables and columns referenced in a WHERE clause when loading the cache
group must be fully qualified. For example:

user_name.table_name and user_name.table_name.column_name

When an autorefresh operation occurs on an explicitly loaded cache group, all
committed inserts, updates and deletes on the cached Oracle tables since the last
autorefresh cycle are refreshed into the cache tables. New cache instances may be
loaded into the cache tables. Cache instances that already exist in the cache tables are
updated or deleted if the corresponding rows in the cached Oracle tables have been
updated or deleted.

Loading and refreshing a dynamic cache group with autorefresh
If the autorefresh state of a dynamic cache group is PAUSED, the autorefresh state is
changed to ON after any of the following events occur:

■ Its cache tables are initially empty, and then a dynamic load, a LOAD CACHE
GROUP or an unconditional REFRESH CACHE GROUP statement issued on the
cache group completes

Loading and refreshing a cache group

Cache Group Operations 5-5

■ Its cache tables are not empty, and then an unconditional REFRESH CACHE
GROUP statement issued on the cache group completes

If the autorefresh state of a dynamic cache group is PAUSED, the autorefresh state
remains at PAUSED after any of the following events occur:

■ Its cache tables are initially empty, and then a REFRESH CACHE GROUP ...
WITH ID statement issued on the cache group completes

■ Its cache tables are not empty, and then a dynamic load, a REFRESH CACHE
GROUP ... WITH ID, or a LOAD CACHE GROUP statement issued on the cache
group completes

For a dynamic cache group, an autorefresh operation only refreshes committed
updates and deletes on the cached Oracle tables since the last autorefresh cycle into
the cache tables because only existing cache instances in the cache tables are refreshed.
New cache instances are not loaded into the cache tables. To load new cache instances
into the cache tables of a dynamic cache group, use a LOAD CACHE GROUP statement
or perform a dynamic load operation. See "Dynamically loading a cache instance" on
page 5-10 for more information about a dynamic load operation.

The following restrictions apply when manually loading or refreshing a dynamic
cache group with automatic refresh:

■ The autorefresh state must be PAUSED or ON before you can issue a LOAD CACHE
GROUP statement.

■ The autorefresh state must be PAUSED before you can issue a REFRESH CACHE
GROUP statement.

■ A LOAD CACHE GROUP statement that contains a WHERE clause must include a
COMMIT EVERY n ROWS clause after the WHERE clause

■ A REFRESH CACHE GROUP statement cannot contain a WHERE clause.

■ All tables and columns referenced in a WHERE clause when loading the cache
group must be fully qualified. For example:

user_name.table_name and user_name.table_name.column_name

Loading and refreshing a cache group using a WITH ID clause
The WITH ID clause of the LOAD CACHE GROUP or REFRESH CACHE GROUP
statement enables you to load or refresh a cache group based on values of the primary
key columns without having to use a WHERE clause. The WITH ID clause is more
convenient than the equivalent WHERE clause if the primary key contains more than
one column. Using the WITH ID clause allows you to load one cache instance at a
time. It also enables you to roll back the transaction containing the load or refresh
operation, if necessary, unlike the equivalent statement that uses a WHERE clause
because using a WHERE clause also requires specifying a COMMIT EVERY n ROWS
clause.

Example 5–5 Loading a cache group using a WITH ID clause

A cache group recent_orders contains a single cache table oratt.orderdetails
with a primary key of (orderid, itemid). If a customer calls about an item within a
particular order, the information can be obtained by loading the cache instance for the
specified order number and item number.

Load the oratt.orderdetails cache table in the recent_orders cache group
with the row whose value in the orderid column of the oratt.orderdetails
cached Oracle table is 1756 and its value in the itemid column is 573:

Loading and refreshing a cache group

5-6 Oracle In-Memory Database Cache User's Guide

LOAD CACHE GROUP recent_orders WITH ID (1756,573);

The following is an equivalent LOAD CACHE GROUP statement that uses a WHERE
clause:

LOAD CACHE GROUP recent_orders WHERE orderid = 1756 and itemid = 573
 COMMIT EVERY 256 ROWS;

A LOAD CACHE GROUP or REFRESH CACHE GROUP statement issued on an
autorefresh cache group cannot contain a WITH ID clause unless the cache group is
dynamic.

You cannot use the COMMIT EVERY n ROWS clause with the WITH ID clause.

Initiating an immediate autorefresh
If the Oracle tables have been updated with data that needs to be applied to cache
tables without waiting for the next autorefresh operation, you can call the
ttCacheAutorefresh built-in procedure. The ttCacheAutorefresh built-in
procedure initiates an immediate refresh operation and resets the autorefresh cycle to
start at the moment you invoke ttCacheAutorefresh. The refresh operation is full
or incremental depending on how the cache group is configured. The autorefresh state
must be ON when ttCacheAutorefresh is called.

The autorefresh operation normally refreshes all cache groups sharing the same
refresh interval in one transaction in order to preserve transactional consistency across
these cache groups. Therefore, although you specify a specific cache group when you
call ttCacheAutorefresh, the autorefresh operation occurs in one transaction for all
cache groups that share the autorefresh interval with the specified cache group. If
there is an existing transaction with table locks on objects that belong to the affected
cache groups, ttCacheAutofresh returns an error without taking any action.

You can choose to run ttCacheAutorefresh asynchronously (the default) or
synchronously. In synchronous mode, ttCacheAutorefresh returns an error if the
refresh operation fails.

After calling ttCacheAutorefresh, you must commit or roll back the transaction
before subsequent work can be performed.

Example 5–6 Calling ttCacheAutorefresh

This example calls ttCacheAutorefresh for the ttuser.western_customers
cache group, using asynchronous mode.

Command> call ttCacheAutorefresh('ttuser', 'western_customers');

Loading and refreshing a multiple-table cache group
If you are loading or refreshing a multiple-table cache group while the cached Oracle
tables are concurrently being updated, set the isolation level in the TimesTen database
to serializable before issuing the LOAD CACHE GROUP or REFRESH CACHE GROUP
statement. This causes TimesTen to query the cached Oracle tables in a serializable
fashion during the load or refresh operation so that the loaded or refreshed cache
instances in the cache tables are guaranteed to be transactionally consistent with the
corresponding rows in the cached Oracle tables. After you have loaded or refreshed
the cache group, set the isolation level back to read committed for better concurrency
when accessing elements in the TimesTen database.

Loading and refreshing a cache group

Cache Group Operations 5-7

Improving the performance of loading or refreshing a large number of cache instances
You can improve the performance of loading or refreshing a large number of cache
instances into a cache group by using the PARALLEL clause of the LOAD CACHE
GROUP or REFRESH CACHE GROUP statement. Specify the number of threads to use
when processing the load or refresh operation. You can specify 1 to 10 threads. One
thread fetches rows from the cached Oracle tables, while the other threads insert the
rows into the TimesTen cache tables. Do not specify more threads than the number of
CPUs available on your system or you may encounter decreased performance than if
you had not used the PARALLEL clause.

Example 5–7 Refreshing a cache group using a PARALLEL clause

The following statement refreshes cache instances in the TimesTen cache tables within
the western_customers cache group from the cached Oracle tables using one
thread to fetch rows from the cached Oracle tables and three threads to insert the rows
into the cache tables:

REFRESH CACHE GROUP western_customers COMMIT EVERY 256 ROWS PARALLEL 4;

Example of manually loading and refreshing an explicitly loaded cache group
The following is the definition of the Oracle table that will be cached in an explicitly
loaded AWT cache group. The Oracle table is owned by the schema user oratt.

CREATE TABLE customer
(cust_num NUMBER(6) NOT NULL PRIMARY KEY,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100));

The following is the data in the oratt.customer cached Oracle table.

CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St. Portland OR
 2 East Angela Wilkins 356 Olive St. Boston MA
 3 Midwest Stephen Johnson 7638 Walker Dr. Chicago IL

The following statement creates an explicitly loaded AWT cache group new_
customers that caches the oratt.customer table:

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP new_customers
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num));

The oratt.customer TimesTen cache table is initially empty.

Command> SELECT * FROM oratt.customer;

Note: You cannot use the WITH ID clause or the COMMIT EVERY 0
ROWS clause with the PARALLEL clause. In addition, you cannot use
the PARALLEL clause for read-only dynamic cache groups or when
database level locking is enabled. For more details, see "REFRESH
CACHE GROUP" in the Oracle TimesTen In-Memory Database SQL
Reference.

Loading and refreshing a cache group

5-8 Oracle In-Memory Database Cache User's Guide

0 rows found.

The following LOAD CACHE GROUP statement loads the three cache instances from
the cached Oracle table into the TimesTen cache table:

Command> LOAD CACHE GROUP new_customers COMMIT EVERY 256 ROWS;
3 cache instances affected.
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St. Portland OR >
< 2, East, Angela Wilkins, 356 Olive St. Boston MA >
< 3, Midwest, Stephen Johnson, 7638 Walker Dr. Chicago IL >

Update the cached Oracle table by inserting a new row, updating an existing row, and
deleting an existing row:

SQL> INSERT INTO customer
 2 VALUES (4, 'East', 'Roberta Simon', '3667 Park Ave. New York NY');
SQL> UPDATE customer SET name = 'Angela Peterson' WHERE cust_num = 2;
SQL> DELETE FROM customer WHERE cust_num = 3;
SQL> COMMIT;
SQL> SELECT * FROM customer;
CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St. Portland OR
 2 East Angela Peterson 356 Olive St. Boston MA
 4 East Roberta Simon 3667 Park Ave. New York NY

A REFRESH CACHE GROUP statement issued on an explicitly loaded cache group is
processed by unloading and then reloading the cache group. As a result, the cache
instances in the cache table matches the rows in the cached Oracle table.

Command> REFRESH CACHE GROUP new_customers COMMIT EVERY 256 ROWS;
3 cache instance affected.
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St. Portland OR >
< 2, East, Angela Peterson, 356 Olive St. Boston MA >
< 4, East, Roberta Simon, 3667 Park Ave. New York NY >

Example of manually loading and refreshing a dynamic cache group
The following is the definition of the Oracle table that will be cached in a dynamic
AWT cache group. The Oracle table is owned by the schema user oratt.

CREATE TABLE customer
(cust_num NUMBER(6) NOT NULL PRIMARY KEY,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100));

The following is the data in the oratt.customer cached Oracle table.

CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St. Portland OR
 2 East Angela Wilkins 356 Olive St. Boston MA
 3 Midwest Stephen Johnson 7638 Walker Dr. Chicago IL

The following statement creates a dynamic AWT cache group new_customers that
caches the oratt.customer table:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP new_customers
FROM oratt.customer

Loading and refreshing a cache group

Cache Group Operations 5-9

 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num));

The oratt.customer TimesTen cache table is initially empty:

Command> SELECT * FROM oratt.customer;
0 rows found.

The following LOAD CACHE GROUP statement loads the three cache instances from
the cached Oracle table into the TimesTen cache table:

Command> LOAD CACHE GROUP new_customers COMMIT EVERY 256 ROWS;
3 cache instances affected.
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St. Portland OR >
< 2, East, Angela Wilkins, 356 Olive St. Boston MA >
< 3, Midwest, Stephen Johnson, 7638 Walker Dr. Chicago IL >

Update the cached Oracle table by inserting a new row, updating an existing row, and
deleting an existing row:

SQL> INSERT INTO customer
 2 VALUES (4, 'East', 'Roberta Simon', '3667 Park Ave. New York NY');
SQL> UPDATE customer SET name = 'Angela Peterson' WHERE cust_num = 2;
SQL> DELETE FROM customer WHERE cust_num = 3;
SQL> COMMIT;
SQL> SELECT * FROM customer;
CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St. Portland OR
 2 East Angela Peterson 356 Olive St. Boston MA
 4 East Roberta Simon 3667 Park Ave. New York NY

A REFRESH CACHE GROUP statement issued on a dynamic cache group only
refreshes committed updates and deletes on the cached Oracle tables into the cache
tables. New cache instances are not loaded into the cache tables. Therefore, only
existing cache instances are refreshed. As a result, the number of cache instances in the
cache tables are either fewer than or the same as the number of rows in the cached
Oracle tables.

Command> REFRESH CACHE GROUP new_customers COMMIT EVERY 256 ROWS;
2 cache instances affected.
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St. Portland OR >
< 2, East, Angela Peterson, 356 Olive St. Boston MA >

A subsequent LOAD CACHE GROUP statement loads one cache instance from the
cached Oracle table into the TimesTen cache table because only committed inserts are
loaded into the cache table. Therefore, only new cache instances are loaded. Cache
instances that already exist in the cache tables are not changed as a result of a LOAD
CACHE GROUP statement, even if the corresponding rows in the cached Oracle tables
were updated or deleted.

Command> LOAD CACHE GROUP new_customers COMMIT EVERY 256 ROWS;
1 cache instance affected.
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St. Portland OR >
< 2, East, Angela Peterson, 356 Olive St. Boston MA >

Dynamically loading a cache instance

5-10 Oracle In-Memory Database Cache User's Guide

< 4, East, Roberta Simon, 3667 Park Ave. New York NY >

Dynamically loading a cache instance
In a dynamic cache group, data is automatically loaded into the TimesTen cache tables
from the cached Oracle tables when a qualifying SELECT, INSERT, UPDATE, or
DELETE statement is issued on one of the cache tables and the data does not exist in
the cache table but does exist in the cached Oracle table.

However, if the Oracle database is down, the following error is returned:

5219: Temporary Oracle connection failure error in OCISessionBegin():
 ORA-01034: ORACLE not available

A dynamic load retrieves a single cache instance, which is either automatically loaded
from Oracle to the TimesTen database or, for dynamic global cache groups, transferred
from the grid member that owns the instance to the requesting grid member. A cache
instance consists of row from the root table of any cache group (that is uniquely
identified by a primary key) and all related rows in the child tables associated by
foreign key relationships.

If a row in the cached Oracle table satisfies the WHERE clause, which must specify
either the primary key of any table or the foreign key of a child table, the entire
associated cache instance is loaded in order to maintain the defined relationships
between primary keys and foreign keys of the parent and child tables. A dynamic load
operation cannot load more than one row into the root table of any cache group. Only
cache instances whose rows satisfy the WHERE clause of the cache table definitions are
loaded.

The dynamic load is executed in a different transaction than the user transaction that
triggers the dynamic load. The dynamic load transaction is committed before the SQL
statement that triggers the dynamic load has finished execution. Thus, if the user
transaction is rolled back, the dynamically loaded data remains in the cache group.

With global cache groups, the TimesTen database must be attached to a cache grid
before dynamic load is allowed with these cache groups. See "Global cache groups" on
page 4-41 for more information about global cache groups and attaching a TimesTen
database to a cache grid.

The following sections describes dynamic load for cache groups:

■ Dynamic load configuration

■ Dynamic load guidelines

■ Examples of dynamically loading a cache instance

■ Return dynamic load errors

Dynamic load configuration
Dynamic load can be configured as follows:

■ 0 - Disables dynamic load of Oracle data to TimesTen dynamic cache groups for
the current connection.

Note: Dynamic load can only be performed for dynamic cache
groups if the DynamicLoadEnable connection attribute is enabled.
See "Dynamic load configuration" on page 5-10 for more details.

Dynamically loading a cache instance

Cache Group Operations 5-11

■ 1 (default) - Enables dynamic load of Oracle data to a single TimesTen dynamic
cache group per statement for the current connection. The statement must
reference tables of only one dynamic cache group, which must be referenced in the
main query. The statement can also reference non-cache tables. Only one cache
instance can be loaded.

■ 2 - Enables dynamic load of Oracle data to one or multiple TimesTen dynamic
cache groups per statement for the current connection. All cache groups
referenced in the main query will be dynamically loaded; any cache groups
referenced solely in a subquery will be ignored for dynamic load. The statement
can also reference non-cache tables. Only one cache instance can be loaded.

For any dynamic cache group to be considered for a dynamic load, there must be an
equality condition with constants and/or parameters on all columns of a primary key
or a foreign key of any table of the cache group. If more than one table of a cache
group is referenced, each must be connected by an equality condition on the primary
and foreign key relationship. For DynamicLoadEnable=1, all tables referenced in the
relationship must exist only within a single cache group; for DynamicLoadEnable=2,
the referenced tables can exist within multiple cache groups.

Set the appropriate value in the DynamicLoadEnable connection attribute to
configure the type of dynamic loading for all cache tables in dynamic cache groups
that are accessed within a particular connection.

To enable or disable dynamic loading for a particular transaction, you can set the
DynamicLoadEnable optimizer hint. However, the DynamicLoadEnable
connection attribute is the only method for configuring what type of dynamic load is
enabled.

Set the DynamicLoadEnable optimizer hint with one of the following methods:

■ Use the ttIsql utility set dynamicloadenable command.

■ Call the ttOptSetFlag built-in procedure with the DynamicLoadEnable flag
set to the desired value. The following example sets dynamic loading to 1.

call ttOptSetFlag('DynamicLoadEnable', 1)

Dynamic load guidelines
Dynamic load retrieves at most one cache instance for each cache group referenced in
the main query. This section details the guidelines under which dynamic load occurs.

Dynamic load is available only for the following types of statements issued on a cache
table in a dynamic cache group:

■ When an INSERT statement inserts values into any of the child tables of a cache
instance that does not currently exist in the TimesTen tables, the cache instance

Note: For more details, see "DynamicLoadEnable", "ttIsql" or
"ttOptSetFlag" in the Oracle TimesTen In-Memory Database Reference.

You can also set connection attributes with the
SQLSetConnectOption ODBC function. See the Oracle TimesTen
In-Memory Database C Developer's Guide for more details.

Note: Examples for these guidelines are provided in "Examples of
dynamically loading a cache instance" on page 5-13.

Dynamically loading a cache instance

5-12 Oracle In-Memory Database Cache User's Guide

that the new row belongs to will be dynamic loaded. The insert operation for the
new child row is propagated to the cached Oracle table.

■ SELECT, UPDATE, or DELETE requires an equality condition with constants
and/or parameters on all columns of a primary key or a foreign key of any table of
the cache group. If more than one table of a cache group is referenced, each must
be connected by an equality condition on the primary and foreign key
relationship.

The SELECT, UPDATE, or DELETE statements for which dynamic load is available must
satisfy the following conditions:

■ If the statement contains a subquery, only the cache group with tables referenced
in the main query are considered for a dynamic load.

■ If the statement references multiple tables of the cache group, the statement must
include an equality join condition between the primary keys and foreign keys for
all parent and child relationships.

■ The statement cannot contain the UNION, INTERSECT, or MINUS set operators.

■ The statement can reference non-cache tables.

■ By default, the statement can reference cache tables from only one dynamic cache
group. This behavior is enabled when DynamicLoadEnable is set to 1. However,
if DynamicLoadEnable is set to 2, the statement can reference cache tables from
multiple dynamic cache groups. See "Dynamic load configuration" on page 5-10
for more information.

Dynamic load behavior depends on the setting of DynamicLoadEnable. The
following describes the rules that are evaluated to determine if a dynamic load occurs.
These rules are followed when DynamicLoadEnable is set to either 1 or 2.

■ Dynamic load will not occur for a cache group if any table of the cache group is
specified more than once in any FROM clause.

■ Only the conditions explicitly specified in the query are considered for dynamic
load, which excludes any derived conditions.

■ If any cache group is referenced only in a subquery, it will not be considered for a
dynamic load.

■ If the cache group has a time-based aging policy defined, the timestamp in the root
table's row must be within the aging policy's lifetime in order for the cache
instance to be loaded. See "Implementing aging in a cache group" on page 4-35 for
information about defining an aging policy on a cache group.

■ When using an active standby pair replication scheme, dynamic load cannot occur
in any subscriber.

When dynamic load is enabled with setting DynamicLoadEnable to 2, you can
include multiple dynamic cache groups in the statement. The rules for this situation
that determines if a dynamic load occurs are as follows:

■ If multiple cache groups exist within in a query, dynamic load is considered for
the cache groups that meet the required conditions for a dynamic load. Dynamic

Note: Dynamic loading based on a primary key search of the root
table performs faster than primary key searches on a child table or
foreign key searches on a child table.

Dynamically loading a cache instance

Cache Group Operations 5-13

load is not considered for any cache groups that do not meet dynamic load
conditions.

■ If tables of any dynamic cache group are referenced in the main query, they are
considered for dynamic load, even if other tables in any cache group are
referenced in the subquery.

The following considerations can affect dynamic load:

■ If tables within multiple cache groups or non-cache group tables are specified in
the main query, the join order influences if the cache instance is loaded. If during
the execution of the query, a dynamic load is possible and necessary to produce
the query results, the dynamic load occurs. However, if no rows will be returned,
then some or all of the cache instances will not be dynamically loaded.

■ If a statement specifies more than the dynamic load condition on tables of a cache
group, the cache instance may be dynamically loaded even though the additional
conditions are not qualified for the statement.

Examples of dynamically loading a cache instance
The following is the definition of the Oracle tables that will be cached in a dynamic
AWT cache group. The Oracle table is owned by the schema user oratt.

CREATE TABLE customer
(cust_num NUMBER(6) NOT NULL PRIMARY KEY,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100))

CREATE TABLE orders
(ord_num NUMBER(10) NOT NULL PRIMARY KEY,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL)

CREATE TABLE orderdetails
 (orderid NUMBER(10) NOT NULL,
 itemid NUMBER(8) NOT NULL,
 quantity NUMBER(4) NOT NULL,
 PRIMARY KEY (orderid, itemid))

For example, the following data is in the oratt.customer cached Oracle table.

CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St., Portland OR
 2 East Angela Wilkins 356 Olive St., Boston MA
 3 Midwest Stephen Johnson 7638 Walker Dr., Chicago IL

The following statement creates a dynamic AWT cache group new_customers that
caches the oratt.customer, oratt.orders, and oratt.orderdetails tables:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP new_customers
FROM oratt.customer
 (cust_num NUMBER(6) NOT NULL,
 region VARCHAR2(10),
 name VARCHAR2(50),
 address VARCHAR2(100),
 PRIMARY KEY(cust_num)),
oratt.orders

Dynamically loading a cache instance

5-14 Oracle In-Memory Database Cache User's Guide

 (ord_num NUMBER(10) NOT NULL,
 cust_num NUMBER(6) NOT NULL,
 when_placed DATE NOT NULL,
 when_shipped DATE NOT NULL,
 PRIMARY KEY(ord_num),
 FOREIGN KEY(cust_num) REFERENCES oratt.customer(cust_num)),
oratt.orderdetails
 (orderid NUMBER(10) NOT NULL,
 itemid NUMBER(8) NOT NULL,
 quantity NUMBER(4) NOT NULL,
 PRIMARY KEY(orderid, itemid),
 FOREIGN KEY(orderid) REFERENCES oratt.orders(order_num))

The following examples can be used when DynamicLoadEnable is set to 1:

The oratt.customer TimesTen cache table is initially empty:

Command> SELECT * FROM oratt.customer;
0 rows found.

The following SELECT statement with an equality condition on the primary key for
the oratt.customer table results in a dynamic load:

Command> SELECT * FROM oratt.customer WHERE cust_num = 1;
< 1, West, Frank Edwards, 100 Pine St., Portland OR >

However, if you do not use an equality condition on the primary key, no dynamic load
occurs:

Command> SELECT * FROM oratt.customer WHERE cust_num IN (1,2);

The following example contains equality expressions on all of the primary key
columns for a primary key composite. The orderdetails table has a composite
primary key of orderid and itemid.

UPDATE oratt.orderdetails SET quantity = 5 WHERE orderid=2280 AND itemid=663

The following example shows an INSERT into the orders child table, which initiates
a dynamic load. However, if you tried to insert into the customer table, which is the
parent, no dynamic load occurs.

INSERT INTO orders VALUES(1,1, DATE '2012-01-25', DATE '2012-01-30')

The following UPDATE statement dynamically loads one cache instance from the
cached Oracle table into the TimesTen cache table, updates the instance in the cache
table, and then automatically propagates the update to the cached Oracle table:

Command> UPDATE oratt.customer SET name = 'Angela Peterson' WHERE cust_num = 2;
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St., Portland OR >
< 2, East, Angela Peterson, 356 Olive St., Boston MA >

The following is the updated data in the oratt.customer cached Oracle table:

CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St., Portland OR
 2 East Angela Peterson 356 Olive St., Boston MA
 3 Midwest Stephen Johnson 7638 Walker Dr., Chicago IL

Dynamically loading a cache instance

Cache Group Operations 5-15

The following DELETE statement dynamically loads one cache instance from the
cached Oracle table into the TimesTen cache table, deletes the instance from the cache
table, and then automatically propagates the delete to the cached Oracle table:

Command> DELETE FROM oratt.customer WHERE cust_num = 3;
Command> SELECT * FROM oratt.customer;
< 1, West, Frank Edwards, 100 Pine St., Portland OR >
< 2, East, Angela Peterson, 356 Olive St., Boston MA >

The following is the updated data in the oratt.customer cached Oracle table.

CUST_NUM REGION NAME ADDRESS
-------- ------- --------------- ---------------------------
 1 West Frank Edwards 100 Pine St., Portland OR
 2 East Angela Peterson 356 Olive St., Boston MA

The following examples demonstrate how to use dynamic load when referencing
tables across multiple cache groups, which is enabled when DynamicLoadEnable is
set to 2.

The following statements create multiple dynamic AWT cache groups, each with one
or more tables that are cached from the Oracle database.

CREATE DYNAMIC CACHE GROUP cachegrp
 FROM table1(x1 INT PRIMARY KEY, y1 INT);

CREATE DYNAMIC CACHE GROUP cachegrp2
 FROM table2(x2 INT PRIMARY KEY, y2 INT),
 table3(x3 INT PRIMARY KEY, y3 INT,
 FOREIGN KEY(y3) REFERENCES table2(x2) ;

CREATE DYNAMIC CACHE GROUP cachegrp3
FROM table4(x4 INT PRIMARY KEY, y4 INT);

CREATE TABLE table5
 (x5 INT PRIMAY KEY,y5 INT);

The following example shows that no dynamic load will occur, even though the
optimizer may derive that x1 should be equated to 1:

SELECT * FROM table1, table5 WHERE x5=1 AND x5=x1;

Dynamic load will be considered for the cache instance from table2 within
cachegrp2 since table2 is referenced in the main query.

SELECT * FROM table5, table2
 WHERE x5 IN (SELECT y2 FROM table2, table3 where x2=1 and x2=y3);

The cache instance in the cachegrp2 cache group is not considered for a dynamic
load because all of its tables are referenced in the subquery.

SELECT * FROM table5
 WHERE x5 IN
 (SELECT y3 FROM table2, table3 WHERE x2=1 AND x2=y3);

In the following example, if the row that would be retrieved from table1 where
x1=1 is not already in the cache, whether the cache instance from table1 is loaded
depends on the join order. If the join order is 'table5 table1,' the cache instance
from table1 will be loaded if and only if there is a row in table5 for which x5=1. If
the join order is 'table1 table5', then the cache instance from table1 will always
be loaded.

Flushing a user managed cache group

5-16 Oracle In-Memory Database Cache User's Guide

SELECT * FROM table1, table5 WHERE x1=1 AND x5=1;

A row (1,1) may be loaded for table1, but the SELECT will not return any rows.

SELECT * FROM table1 WHERE x1=1 AND y1>1;

Return dynamic load errors
You can configure TimesTen to return an error if a SELECT, UPDATE or DELETE
statement does not meet the requirements stated in "Dynamic load guidelines" on
page 5-11. The DynamicLoadErrorMode connection attribute controls what happens
when an application executes a SQL operation against a dynamic cache group and the
SQL operation cannot use dynamic load in a particular connection.

■ When DynamicLoadErrorMode is set to a value of 0, dynamic load will happen
to any cache group referenced in the query that is qualified for dynamic load.
Cache groups that do not qualify will not be dynamically loaded and no errors
will be returned. When DynamicLoadEnable=1, no dynamic load will occur if
the query references more than one cache group.

■ When DynamicLoadErrorMode is set to a value of 1, a query will fail with an
error if any dynamic cache group referenced in the query is not qualified for
dynamic load. The error indicates the reason why the dynamic load cannot occur.

To set the connection attribute solely for a particular transaction, use one of the
following:

■ Use the ttIsql utility set dynamicloaderrormode 1 command.

■ Call the ttOptSetFlag built-in procedure with the DynamicLoadErrorMode
flag and the optimizer value set to 1.

call ttOptSetFlag('DynamicLoadErrorMode', 1)

Call the ttOptSetFlag built-in procedure with the DynamicLoadErrorMode
flag and the optimizer value set to 0 to suppress error reporting when a statement
does not comply with dynamic load requirements.

Flushing a user managed cache group
The FLUSH CACHE GROUP statement manually propagates committed inserts and
updates on TimesTen cache tables in a user managed cache group to the cached Oracle
tables. Deletes are not flushed or manually propagated. Committed inserts and
updates on cache tables that use the PROPAGATE cache table attribute cannot be
flushed to the cached Oracle tables because these operations are already automatically
propagated to Oracle.

With automatic propagation, committed inserts, updates and deletes are propagated
to Oracle in the order they were committed in TimesTen. A flush operation can
manually propagate multiple committed transactions on cache tables to the cached
Oracle tables.

You cannot flush a user managed cache group that uses the AUTOREFRESH cache
group attribute.

You can flush a user managed cache group if at least one of its cache tables uses
neither the PROPAGATE nor the READONLY cache table attribute.

You can use a WHERE clause or WITH ID clause in a FLUSH CACHE GROUP statement
to restrict the rows to be flushed to the cached Oracle tables. See the FLUSH CACHE

Unloading a cache group

Cache Group Operations 5-17

GROUP statement in Oracle TimesTen In-Memory Database SQL Reference for more
information.

Example 5–8 Flushing a cache group

The following statement manually propagates committed insert and update
operations on the TimesTen cache tables in the western_customers cache group to
the cached Oracle tables:

FLUSH CACHE GROUP western_customers;

Unloading a cache group
You can delete some or all cache instances from the cache tables in a cache group with
the UNLOAD CACHE GROUP statement. Unlike the DROP CACHE GROUP statement,
the cache tables themselves are not dropped when a cache group is unloaded.

Use caution when using the UNLOAD CACHE GROUP statement with autorefresh cache
groups. An unloaded row can reappear in the cache table as the result of an
autorefresh operation if the row, or its related parent or child rows, are updated in the
cached Oracle table.

Execution of the UNLOAD CACHE GROUP statement for an AWT cache group waits
until updates on the rows have been propagated to the Oracle database.

Example 5–9 Unloading cache groups

The following statement unloads all cache instances from all cache tables in the
customer_orders cache group in a single transaction. A single transaction should
only be used if the data within customer_orders is small:

UNLOAD CACHE GROUP customer_orders;

The following equivalent statements delete the cache instance for customer number
227 from the cache tables in the new_customers cache group:

UNLOAD CACHE GROUP new_customers WITH ID (227);
UNLOAD CACHE GROUP new_customers WHERE (oratt.customer.cust_num = 227);

Unloading a cache group across all grid members
You can unload a cache group in all members of a cache grid by setting an optimizer
flag. Before executing the UNLOAD CACHE GROUP statement, call the ttOptSetFlag
built-in procedure and set the GlobalProcessing optimizer flag to 1:

CALL ttOptSetFlag('GlobalProcessing', 1);

Consider this statement:

UNLOAD CACHE GROUP customer WHERE customer_id=54321;

A local unload operation removes the customer record only if the record exists on the
node where the statement is executed. A global unload operation removes the
customer record regardless of which node contains the record.

Note: For more information, see "UNLOAD CACHE GROUP" in the
Oracle TimesTen In-Memory Database SQL Reference.

Determining the number of cache instances affected by an operation

5-18 Oracle In-Memory Database Cache User's Guide

Determining the number of cache instances affected by an operation
You can use the following mechanisms to determine how many cache instances were
loaded by a LOAD CACHE GROUP statement, refreshed by a REFRESH CACHE GROUP
statement, flushed by a FLUSH CACHE GROUP statement, or unloaded by an UNLOAD
CACHE GROUP statement:

■ Call the SQLRowCount() ODBC function

■ Invoke the Statement.getUpdateCount() JDBC method

■ Call the OCIAttrGet() OCI function with the OCI_ATTR_ROW_COUNT option

Setting a passthrough level
When an application issues statements on a TimesTen connection, the statement can
be executed in the TimesTen database or passed through to the Oracle database for
execution. Whether the statement is executed in the TimesTen or Oracle database
depends on the composition of the statement and the setting of the PassThrough
connection attribute. You can set the PassThrough connection attribute to define
which statements are to be executed locally in TimesTen and which are to be
redirected to Oracle for execution.

PassThrough=0
PassThrough=0 is the default setting and specifies that all statements are to be
executed in the TimesTen database. Figure 5–1 shows that Table A is updated on the
TimesTen database. Table F cannot be updated because it does not exist in TimesTen.

Note: A transaction that contains operations that are replicated with
RETURN TWOSAFE cannot have a PassThrough setting greater than
0. If PassThrough is greater than 0, an error is returned and the
transaction must be rolled back.

When PassThrough is set to 0, 1, or 2, the following behavior occurs
when a dynamic load condition exists:

■ A dynamic load can occur for a SELECT operation on cache tables
in any dynamic cache group type.

■ A dynamic load for an INSERT, UPDATE, or DELETE operation
can only occur on cached tables with dynamic AWT or SWT cache
groups.

See "Dynamically loading a cache instance" on page 5-10 for more
details on dynamic load.

Setting a passthrough level

Cache Group Operations 5-19

Figure 5–1 PassThrough=0

PassThrough=1
Set PassThrough=1 to specify that a statement that references a table that does not
exist in the TimesTen database is passed through to the Oracle database for execution.
No DDL statements are passed through to the Oracle database.

If TimesTen cannot parse a SELECT statement because it includes keywords that do
not exist in TimesTen SQL or because it includes syntax errors, it passes the statement
to the Oracle database. If TimesTen cannot parse INSERT, UPDATE or DELETE
statements, TimesTen returns an error and the statement is not passed through to the
Oracle database.

Figure 5–2 shows that Table A is updated in the TimesTen database, while Table G is
updated in the Oracle database because Table G does not exist in the TimesTen
database.

Oracle database

Updatable
cache group

Update Table A Update Table F

PassThrough = 0

TimesTen database

A

B C

D

A
B

C

D

E
F

G

Update Table A
Update Table F

Application

Fails because
table F does not
exist in the
TimesTen
database

Setting a passthrough level

5-20 Oracle In-Memory Database Cache User's Guide

Figure 5–2 PassThrough=1

PassThrough=2
PassThrough=2 specifies that INSERT, UPDATE and DELETE statements are passed
through to the Oracle database for read-only cache groups and user managed cache
groups that use the READONLY cache table attribute. Otherwise, Passthrough=1
behavior applies.

Figure 5–3 shows that updates to Table A and Table G in a read-only cache group are
passed through to the Oracle database.

Oracle database

Updatable
cache group

Update Table A Update Table G

PassThrough = 1

TimesTen database

A

B C

D

A
B

C

D

E
F

G

Update Table A
Update Table G

Application

Statement passed
through to Oracle
for execution
because table G
does not exist in
TimesTen database

Setting a passthrough level

Cache Group Operations 5-21

Figure 5–3 PassThrough=2

PassThrough=3
PassThrough=3 specifies that all statements are passed through to the Oracle
database for execution, except that INSERT, UPDATE and DELETE statements issued
on cache tables in a dynamic AWT global cache group result in a TimesTen error.

Figure 5–4 shows that Table A is updated on the Oracle database for a read-only or
updatable cache group. A SELECT statement that references Table G is also passed
through to the Oracle database. A SELECT statement that references Table C in a
dynamic AWT global cache group is passed through to the Oracle database.

Oracle database

Read-only
cache group

Update Table A Update Table G

PassThrough = 2

TimesTen database

A

B C

D

A
B

C

D

E
F

G

Update Table A
Update Table G

Application

INSERT, UPDATE and DELETE statements
are passed through to the Oracle
database for read-only cache groups and
read-only cache tables. SELECT statements
are executed in TimesTen unless they
contain invalid TimesTen syntax or
reference tables that do not exist in TimesTen.

Setting a passthrough level

5-22 Oracle In-Memory Database Cache User's Guide

Figure 5–4 PassThrough=3

PassThrough=4
PassThrough=4 specifies that SELECT statements issued on cache tables in a
dynamic AWT global cache group that do not satisfy the criteria for a dynamic load
query are passed through to the Oracle database for execution. Otherwise, statements
are executed in the TimesTen database. See "Dynamic load guidelines" on page 5-11
for the criteria for a dynamic load SELECT statement.

Figure 5–5 shows that Table A in an updatable cache group is updated in the
TimesTen database. The figure also shows a SELECT statement issued on a dynamic
AWT global cache group that does not satisfy the criteria for a dynamic load SELECT
statement and is passed through to the Oracle database for execution.

Oracle database

Updatable or read-only
cache group

Update Table A Select from Table G

PassThrough = 3

TimesTen database

A

B C

D

A
B

C

D

E
F

G

Update Table A
Select from Table G

Application

Statements are passed
through to the Oracle database
for read-only and updatable cache
groups.

Oracle database

Dynamic AWT global
cache group

Select from Table C

TimesTen database

A

B C

D

A
B

C

D

E
F

G

Select from Table C

Application

Statements are passed
through to the Oracle database.
Inserts, updates and deletes
are not allowed for dynamic AWT
global cache groups.

Setting a passthrough level

Cache Group Operations 5-23

Figure 5–5 PassThrough=4

PassThrough=5
PassThrough=5 specifies that SELECT statements issued on cache tables in a
dynamic AWT global cache group that do not satisfy the criteria for a dynamic load
query are passed through to the Oracle database for execution when all committed
updates on cache tables in dynamic AWT global cache groups by previous
transactions within the connection have been propagated to the Oracle database.
Otherwise statements are executed in the TimesTen database. See "Dynamic load
guidelines" on page 5-11 for the criteria for a dynamic load SELECT statement.

Figure 5–6 shows that Table A in an updatable cache group is updated in the
TimesTen database. The figure also shows a SELECT statement issued on a dynamic
AWT global cache group that does not satisfy the criteria for a dynamic load SELECT
statement and is passed through to the Oracle database for execution after all
committed updates on cache tables in dynamic AWT global cache groups by previous
transactions within the connection have been propagated to the Oracle database.

Oracle database

Updatable
cache group

Update Table A

PassThrough = 4

TimesTen database

A

B C

D

A
B

C

D

E
F

G

Update Table A

Application

Oracle database

Dynamic AWT global
cache group

SELECT statements that do not satisfy the
criteria of a dynamic load query are
passed through to the Oracle database.

TimesTen database

A

B C

D

A
B

C

D

E
F

G

Select from Table B

Application

Select from Table B

Statements are executed
in the TimesTen database.

Setting a passthrough level

5-24 Oracle In-Memory Database Cache User's Guide

Figure 5–6 PassThrough=5

Considerations for using passthrough
Passing through update operations to the Oracle database for execution is not
recommended when issued on cache tables in an AWT or SWT cache group.
Committed updates on cache tables in an AWT cache group are automatically
propagated to the cached Oracle tables in asynchronous fashion. However, passing
through an update operation to the Oracle database for execution within the same
transaction as the update on the cache table in the AWT cache group renders the
propagate of the cache table update synchronous, which may have undesired results.
Committed updates on cache tables in an SWT cache group can result in
self-deadlocks if, within the same transaction, updates on the same tables are passed
through to the Oracle database for execution.

A PL/SQL block cannot be passed through to the Oracle database for execution. Also,
you cannot pass through to Oracle for execution a reference to a stored procedure or
function that is defined in the Oracle database but not in the TimesTen database.

For more information about how the PassThrough connection attribute setting
determines which statements are executed in the TimesTen database and which are
passed through to the Oracle database for execution and under what circumstances,
see "PassThrough" in Oracle TimesTen In-Memory Database Reference.

Oracle database

Updatable
cache group

Update Table A

PassThrough = 5

TimesTen database

A

B C

D

A
B

C

D

E
F

G

Update Table A

Application

Oracle database

Dynamic AWT global
cache group

SELECT statements that do not satisfy the
criteria of a dynamic load query are
passed through to the Oracle database
when all committed updates on cache
tables in dynamic AWT global cache
groups by previous transactions within
the connection have been propagated to
Oracle.

TimesTen database

A

B C

D

A
B

C

D

E
F

G

Select from Table B

Application

Select from Table B

Statements are executed
in the TimesTen database.

Cache performance

Cache Group Operations 5-25

Changing the passthrough level for a connection or transaction
You can override the current passthrough level using the ttIsql utility's set
passthrough command which applies to the current transaction.

You can also override the setting for a specific transaction by calling the
ttOptSetFlag built-in procedure with the PassThrough flag. The following
procedure call sets the passthrough level to 3:

CALL ttOptSetFlag('PassThrough', 3);

The PassThrough flag setting takes effect when a statement is prepared and it is the
setting that is used when the statement is executed even if the setting has changed
from the time the statement was prepared to when the statement is executed. After the
transaction has been committed or rolled back, the original connection setting takes
effect for all subsequently prepared statements.

Cache performance
This section contains information about cache performance.

See Oracle TimesTen In-Memory Database Troubleshooting Guide for extensive
information about monitoring autorefresh operations and improving autorefresh
performance. See "Monitoring autorefresh cache groups" and "Poor autorefresh
performance".

Oracle TimesTen In-Memory Database Troubleshooting Guide also has information about
AWT cache group performance. See "Monitoring AWT performance" and "Possible
causes of poor AWT performance".

Dynamic load performance
Dynamic loading based on a primary key search of the root table has faster
performance than primary key searches on a child table or foreign key searches on a
child table.

Improving AWT throughput
By default, an AWT cache group uses the PL/SQL execution method to apply changes
within TimesTen to the Oracle database. AWT bundles all pending operations into a
single PL/SQL collection that is sent to the Oracle server to be executed. This
execution method is appropriate when there are mixed transactions and network
latency between TimesTen and the Oracle server.

Use the cacheAWTMethod first connection attribute to specify SQL array execution to
apply changes within TimesTen to the Oracle database. This method is appropriate
when the same type of operation is repeated. For example, SQL array execution is very

Note: The passthrough feature uses OCI to communicate with the
Oracle database. The OCI diagnostic framework installs signal
handlers that may impact signal handling that you use in your
application. You can disable OCI signal handling by setting DIAG_
SIGHANDLER_ENABLED=FALSE in the sqlnet.ora file. Refer to
"Fault Diagnosability in OCI" in Oracle Call Interface Programmer's
Guide for information.

Cache performance

5-26 Oracle In-Memory Database Cache User's Guide

efficient when a user does an update that affects several rows of the table. Updates are
grouped together and sent to the Oracle server in one batch.

The PL/SQL execution method transparently falls back to SQL array execution mode
temporarily when it encounters one of the following:

■ A statement that is over 32761 bytes in length.

■ A statement that references a column of type BINARY FLOAT, BINARY DOUBLE
and VARCHAR/VARBINARY of length greater than 4000 bytes.

For more information, see "cacheAWTMethod" in Oracle TimesTen In-Memory Database
Reference.

6

Creating Other Cache Grid Members 6-1

6Creating Other Cache Grid Members

This chapter describes the tasks for creating a second standalone TimesTen database
and an active standby pair, and attaching these members to the cache grid that was
created in Chapter 3, "Setting Up a Caching Infrastructure". It includes the following
topics:

■ Creating and configuring a subsequent standalone TimesTen database

■ Replicating cache tables

■ Example of data sharing among the grid members

■ Performing global queries on a cache grid

■ Adding other elements to a cache grid or grid member

Creating and configuring a subsequent standalone TimesTen database
The following is the definition of the cachealone2 DSN for the second standalone
TimesTen database that will become a member of the ttGrid cache grid:

[cachealone2]
DataStore=/users/OracleCache/alone2
PermSize=64
OracleNetServiceName=orcl
DatabaseCharacterSet=WE8ISO8859P1

Start the ttIsql utility and connect to the cachealone2 DSN as the instance
administrator to create the database. Then create the cache manager user cacheuser
whose name, in this example, is the same as the Oracle cache administration user.
Then create a cache table user oratt whose name is the same as the Oracle schema
user who will own the Oracle tables to be cached in the TimesTen database.

% ttIsql cachealone2
Command> CREATE USER cacheuser IDENTIFIED BY timesten;
Command> CREATE USER oratt IDENTIFIED BY timesten;

Note: If you are planning to use Oracle Clusterware to manage
active standby pairs in a cache grid, see "Using Oracle Clusterware
with a TimesTen cache grid" in Oracle TimesTen In-Memory Database
Replication Guide.

Also see "Restricted commands and SQL statements" in Oracle
TimesTen In-Memory Database Replication Guide. Use the ttCWAdmin
utility to manage the active standby pair grid members instead of the
built-in procedures discussed in this chapter.

Creating and configuring a subsequent standalone TimesTen database

6-2 Oracle In-Memory Database Cache User's Guide

As the instance administrator, use the ttIsql utility to grant the cache manager user
cacheuser the privileges required to perform the operations listed in Example 3–8:

Command> GRANT CREATE SESSION, CACHE_MANAGER, CREATE ANY TABLE TO cacheuser;
Command> exit

Start the ttIsql utility and connect to the cachealone2 DSN as the cache manager
user. Set the cache administration user name and password by calling the
ttCacheUidPwdSet built-in procedure.

% ttIsql "DSN=cachealone2;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheUidPwdSet('cacheuser','oracle');

Associate the second standalone database to the ttGrid cache grid by calling the
ttGridNameSet built-in procedure as the cache manager user:

Command> CALL ttGridNameSet('ttGrid');

The ttGrid cache grid was created from the first standalone TimesTen database.
Since the grid already exists, it does not need to be created again.

If desired, you can test the connectivity between the second standalone TimesTen
database and the Oracle database using the instructions stated in "Testing the
connectivity between the TimesTen and Oracle databases" on page 3-17.

Start the cache agent on the second standalone database by calling the ttCacheStart
built-in procedure as the cache manager user:

Command> CALL ttCacheStart;

Then create cache groups in the database as the cache manager user. For example, the
following statement creates a dynamic AWT global cache group subscriber_
accounts that caches the oratt.subscriber table:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH GLOBAL CACHE GROUP subscriber_accounts
FROM oratt.subscriber
 (subscriberid NUMBER(10) NOT NULL PRIMARY KEY,
 name VARCHAR2(100) NOT NULL,
 minutes_balance NUMBER(5) NOT NULL,
 last_call_duration NUMBER(4) NOT NULL);

The definition of the oratt.subscriber cached Oracle table is shown in "Global
cache groups" on page 4-41.

If any AWT cache groups were created, start the replication agent on the TimesTen
database by calling the ttRepStart built-in procedure as the cache manager user:

Command> CALL ttRepStart;

If any global cache groups were created, the database must attach to the cache grid
that it is associated with in order to update the cache tables of the global cache groups.
Attaching the database to the grid allows the database to become a member of the grid
so that cache instances in the cache tables of the global cache groups can maintain
consistency among the databases within the grid.

As the cache manager user, attach the second standalone database to the ttGrid
cache grid that it is associated with by calling the ttGridAttach built-in procedure.
The node number for a standalone TimesTen database is 1.

In the following example, alone2 is a name that is used to uniquely identify the grid
member, sys2 is the host name of the TimesTen system where the second standalone

Replicating cache tables

Creating Other Cache Grid Members 6-3

database resides, and 5002 is the TCP/IP port for the second standalone database's
cache agent process:

Command> CALL ttGridAttach(1,'alone2','sys2',5002);
Command> exit

Replicating cache tables
To achieve high availability, configure an active standby pair replication scheme for
cache tables in a read-only cache group or an AWT cache group.

An active standby pair that replicates cache tables from one of these cache group types
can automatically change the role of a TimesTen database as part of failover and
recovery with minimal chance of data loss. Cache groups themselves provide
resilience from Oracle database outages, further strengthening system availability. See
"Administering an Active Standby Pair with Cache Groups" in Oracle TimesTen
In-Memory Database Replication Guide for more information.

An active standby pair replication scheme provides for high availability of a TimesTen
database. Multiple grid members provide for high availability of a TimesTen cache
grid. Oracle Real Application Clusters (Oracle RAC) provides for high availability of
an Oracle database. For more information about using Oracle In-Memory Database
Cache in an Oracle RAC environment, see "Using Oracle In-Memory Database Cache
in an Oracle RAC Environment" on page 10-1.

Perform the following tasks to configure an active standby pair for TimesTen
databases that cache Oracle tables:

■ Create and configure the active database

■ Create and configure the standby database

■ Create and configure the read-only subscriber database

Create and configure the active database
The following is the definition of the cacheactive DSN for the active database of the
active standby pair that will become a member of the ttGrid cache grid:

[cacheactive]
DataStore=/users/OracleCache/cacheact
PermSize=64
OracleNetServiceName=orcl
DatabaseCharacterSet=WE8ISO8859P1

Start the ttIsql utility and connect to the cacheactive DSN as the instance
administrator to create the database. Then create the cache manager user cacheuser
whose name, in this example, is the same as the Oracle cache administration user.
Then create a cache table user oratt whose name is the same as the Oracle schema
user who will own the Oracle tables to be cached in the TimesTen database.

% ttIsql cacheactive
Command> CREATE USER cacheuser IDENTIFIED BY timesten;
Command> CREATE USER oratt IDENTIFIED BY timesten;

As the instance administrator, use the ttIsql utility to grant the cache manager user
cacheuser the privileges required to perform the operations listed in Example 3–8 as
well as create an active standby pair replication scheme which requires the ADMIN
privilege:

Command> GRANT CREATE SESSION, CACHE_MANAGER,

Replicating cache tables

6-4 Oracle In-Memory Database Cache User's Guide

 > CREATE ANY TABLE, ADMIN TO cacheuser;
Command> exit

Start the ttIsql utility and connect to the cacheactive DSN as the cache manager
user. Set the cache administration user name and password by calling the
ttCacheUidPwdSet built-in procedure.

% ttIsql "DSN=cacheactive;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheUidPwdSet('cacheuser','oracle');

Associate the active database to the ttGrid cache grid by calling the
ttGridNameSet built-in procedure as the cache manager user:

Command> CALL ttGridNameSet('ttGrid');

The ttGrid cache grid was created from the first standalone TimesTen database.
Since the grid already exists, it does not need to be created again.

If desired, you can test the connectivity between the active database and the Oracle
database using the instructions stated in "Testing the connectivity between the
TimesTen and Oracle databases" on page 3-17.

Start the cache agent on the active database by calling the ttCacheStart built-in
procedure as the cache manager user:

Command> CALL ttCacheStart;

Then create cache groups in the database as the cache manager user. For example, the
following statement creates a dynamic AWT global cache group subscriber_
accounts that caches the oratt.subscriber table:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH GLOBAL CACHE GROUP subscriber_accounts
FROM oratt.subscriber
 (subscriberid NUMBER(10) NOT NULL PRIMARY KEY,
 name VARCHAR2(100) NOT NULL,
 minutes_balance NUMBER(5) NOT NULL,
 last_call_duration NUMBER(4) NOT NULL);

The definition of the oratt.subscriber cached Oracle table is shown in "Global
cache groups".

As the cache manager user, create an active standby pair replication scheme in the
active database using a CREATE ACTIVE STANDBY PAIR statement.

In the following example, cacheact, cachestand and subscr are the file name
prefixes of the checkpoint and transaction log files of the active database, standby
database and read-only subscriber database. sys3, sys4 and sys5 are the host names
of the TimesTen systems where the active database, standby database and read-only
subscriber database reside, respectively.

Command> CREATE ACTIVE STANDBY PAIR cacheact ON "sys3", cachestand ON "sys4"
 > SUBSCRIBER subscr ON "sys5";

As the cache manager user, start the replication agent on the active database by calling
the ttRepStart built-in procedure. Then declare the database as the active by calling
the ttRepStateSet built-in procedure.

Command> CALL ttRepStart;
Command> CALL ttRepStateSet('active');

If any global cache groups were created, the database must attach to the cache grid
that it is associated with in order to update the cache tables of the global cache groups.

Replicating cache tables

Creating Other Cache Grid Members 6-5

Attaching the database to the grid allows the database to become a member of the grid
so that cache instances in the cache tables of the global cache groups can maintain
consistency among the databases within the grid.

As the cache manager user, attach the active database to the ttGrid cache grid that it
is associated with by calling the ttGridAttach built-in procedure. The node number
for an active database is 1.

In the following example:

■ cacheact is a name that is used to uniquely identify the active database grid
node

■ cachestand is a name that is used to uniquely identify the standby database grid
node

■ sys3 is the host name of the TimesTen system where the active database resides

■ sys4 is the host name of the TimesTen system where the standby database resides

■ 5003 is the TCP/IP port for the active database's cache agent process

■ 5004 is the TCP/IP port for the standby database's cache agent process

Command> CALL ttGridAttach(1,'cacheact','sys3',5003,'cachestand','sys4',5004);
Command> exit

Create and configure the standby database
The following is the definition of the cachestandby DSN for the standby database of
the active standby pair that will become a member of the ttGrid cache grid:

[cachestandby]
DataStore=/users/OracleCache/cachestand
PermSize=64
OracleNetServiceName=orcl
DatabaseCharacterSet=WE8ISO8859P1

As the instance administrator, create the standby database as a duplicate of the active
database by running a ttRepAdmin -duplicate utility command from the standby
database system. The instance administrator user name of the active database's and
standby database's instances must be identical.

Use the -keepCG option so that cache tables in the active database are duplicated as
cache tables in the standby database because the standby database will have
connectivity with the Oracle database.

In the following example:

■ The -from option specifies the file name prefix of the active database's checkpoint
and transaction log files

■ The -host option specifies the host name of the TimesTen system where the
active database resides

■ The -uid and -pwd options specify a user name and password of a TimesTen
internal user defined in the active database that has been granted the ADMIN
privilege

■ The -cacheuid and -cachepwd options specify the Oracle cache administration
user name and password

■ cachestandby is the DSN of the standby database

% ttRepAdmin -duplicate -from cacheact -host "sys3" -uid cacheuser -pwd timesten

Replicating cache tables

6-6 Oracle In-Memory Database Cache User's Guide

 -cacheuid cacheuser -cachepwd oracle -keepCG cachestandby

Start the ttIsql utility and connect to the cachestandby DSN as the cache manager
user. Set the cache administration user name and password by calling the
ttCacheUidPwdSet built-in procedure.

% ttIsql "DSN=cachestandby;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheUidPwdSet('cacheuser','oracle');

The ttGrid cache grid was created from the first standalone TimesTen database.
Since the grid already exists, it does not need to be created again.

The ttRepAdmin -duplicate -keepCG utility command associated the standby
database to the ttGrid cache grid so this association does not need to be done
explicitly.

If desired, you can test the connectivity between the standby database and the Oracle
database using the instructions stated in "Testing the connectivity between the
TimesTen and Oracle databases" on page 3-17.

Start the cache agent on the standby database by calling the ttCacheStart built-in
procedure as the cache manager user:

Command> CALL ttCacheStart;

As the cache manager user, start the replication agent on the standby database by
calling the ttRepStart built-in procedure.

Command> CALL ttRepStart;

If any global cache groups were created, the database must attach to the cache grid
that it is associated with in order to update the cache tables of the global cache groups.
Attaching the database to the grid allows the database to become a member of the grid
so that cache instances in the cache tables of the global cache groups can maintain
consistency among the databases within the grid.

As the cache manager user, attach the standby database to the ttGrid cache grid that
it is associated with by calling the ttGridAttach built-in procedure. The node
number for a standby database is 2. Use the same TCP/IP ports specified for the cache
agent of the active and standby databases that were specified when configuring the
active database.

In the following example:

■ cacheact is a name that is used to uniquely identify the active database grid
node

■ cachestand is a name that is used to uniquely identify the standby database grid
node

■ sys3 is the host name of the TimesTen system where the active database resides

■ sys4 is the host name of the TimesTen system where the standby database resides

■ 5003 is the TCP/IP port for the active database's cache agent process

■ 5004 is the TCP/IP port for the standby database's cache agent process

Command> CALL ttGridAttach(2,'cacheact','sys3',5003,'cachestand','sys4',5004);
Command> exit

Example of data sharing among the grid members

Creating Other Cache Grid Members 6-7

Create and configure the read-only subscriber database
The following is the definition of the rosubscriber DSN for the read-only
subscriber database of the active standby pair:

[rosubscriber]
DataStore=/users/OracleCache/subscr
PermSize=64
DatabaseCharacterSet=WE8ISO8859P1

As the instance administrator, create the read-only subscriber database as a duplicate
of the standby database by running a ttRepAdmin -duplicate utility command
from the read-only subscriber database system. The instance administrator user name
of the standby database instance and read-only subscriber database instance must be
identical.

Use the -noKeepCG option so that cache tables in the standby database are duplicated
as regular tables in the read-only subscriber database because the read-only subscriber
database will have no connectivity with the Oracle database. As a result, the read-only
subscriber database will not be associated with a cache grid.

In the following example:

■ The -from option specifies the file name prefix of the standby database's
checkpoint and transaction log files

■ The -host option specifies the host name of the TimesTen system where the
standby database resides

■ The -uid and -pwd options specify a user name and password of a TimesTen
internal user defined in the standby database that has been granted the ADMIN
privilege

■ rosubscriber is the DSN of the read-only subscriber database

% ttRepAdmin -duplicate -from cachestand -host "sys4" -uid cacheuser -pwd timesten
 -noKeepCG rosubscriber

As the cache manager user, start the replication agent on the read-only subscriber
database by calling the ttRepStart built-in procedure.

% ttIsql "DSN=rosubscriber;UID=cacheuser;PWD=timesten"
Command> CALL ttRepStart;
Command> exit

Example of data sharing among the grid members
The definition of the oratt.subscriber cached Oracle table is shown in "Global
cache groups" on page 4-41.

The following is the data in the oratt.subscriber cached Oracle table.

SUBSCRIBERID NAME MINUTES_BALANCE LAST_CALL_DURATION
------------ ---------------- --------------- ------------------
 1001 Jane Anderson 75 15
 1004 Robert Phillips 60 20
 1005 William Ackerman 40 10
 1009 Sandy Little 90 30

The oratt.subscriber TimesTen cache table in the subscriber_accounts
global cache group is initially empty in all five TimesTen databases (cachealone1,
cachealone2, cacheactive, cachestandby, rosubscriber):

Performing global queries on a cache grid

6-8 Oracle In-Memory Database Cache User's Guide

Command> SELECT * FROM oratt.subscriber;
0 rows found.

Issue the following SELECT statement on the cachealone1 TimesTen database to
dynamically load one cache instance from the cached Oracle table into the TimesTen
cache table:

Command> SELECT * FROM oratt.subscriber WHERE subscriberid = 1004;
< 1004, Robert Phillips, 60, 20 >

As a result, the cachealone1 standalone database grid member has ownership of the
cache instance with subscriber ID 1004. This cache instance does not exist in any of the
other grid members.

Next issue the following SELECT statement on the cachealone2 TimesTen database
to dynamically load one cache instance from the cached Oracle table into the TimesTen
cache table:

Command> SELECT * FROM oratt.subscriber WHERE subscriberid = 1004;
< 1004, Robert Phillips, 60, 20 >

As a result, the cachealone2 standalone database grid member has taken ownership
of the cache instance with subscriber ID 1004 from the cachealone1 grid member.
This cache instance no longer exists in cachealone1 and does not exist in any of the
other grid members.

Next issue the following INSERT statement on the cacheactive TimesTen database
to insert a new cache instance into the TimesTen cache table:

Command> INSERT INTO oratt.subscriber VALUES (1012, 'Charles Hill', 80, 16);

As a result, the cacheactive active database grid node has ownership of the cache
instance with subscriber ID 1012. The cache instance is replicated to the
cachestandby standby database and the rosubscriber read-only subscriber
database. The cache instance does not exist in any of the other grid members. The
insert operation is also automatically propagated to the oratt.subscriber cached
Oracle table.

A standby database or a read-only subscriber database cannot directly take ownership
of a cache instance. A dynamic or manual load operation is prohibited including
SELECT statements that result in a dynamic load because these databases are
read-only.

No data sharing occurs with cache tables in local cache groups among the grid
members. Each grid member can have a different number of local cache groups. If two
grid members have a local cache group with the same definition, the data in the cache
table within one grid member can overlap with the data in the cache table within the
other grid member. There is no concept of cache instance ownership for cache tables in
local cache groups.

Performing global queries on a cache grid
If you want to access data on all the nodes of a cache grid, perform a global query. For
example, consider this statement:

SELECT MAX(salary) FROM employees;

When global query processing is not enabled, the statement returns the maximum
salary for the rows that exist on the local node. When global query processing is
enabled, it returns the maximum salary across all employee records in the cache grid.

Performing global queries on a cache grid

Creating Other Cache Grid Members 6-9

A global query can reference a cache table or a noncache table in all attached grid
members. The referenced tables can be any combination of local tables, cache tables,
views, materialized views and table synonyms. The tables must have the same
definition for columns affected by the global query.

Enable global query processing by setting an optimizer flag. Before executing a global
query, turn autocommit off and call the ttOptSetFlag built-in procedure to set the
GlobalProcessing optimizer flag to 1:

autocommit 0;
CALL ttOptSetFlag('GlobalProcessing', 1);

You can perform global queries with local joins by using the GlobalLocalJoin
optimizer flag instead of the GlobalProcessing optimizer flag. See "Performing
global queries with local joins" on page 6-9.

Global queries that are enabled by the GlobalProcessing optimizer flag have these
restrictions:

■ The query must reference exactly one table.

■ The query cannot include a self join, a derived table or subqueries.

■ The query cannot reference a global temporary table.

■ The query cannot be performed on the standby database of an active standby grid
member.

■ ROWNUM and GROUP BY clauses cannot be used in the same query.

■ The query cannot be used with GROUPING SETS, CUBE, ROLLUP, GROUPING,
GROUPING_ID, or GROUP_ID.

■ The query cannot include the WITH clause.

■ The query cannot include analytic SQL functions.

■ The PassThrough connection attribute must be set to 0.

Performing global queries with local joins
You can execute a global query with a local join. This means that the SELECT
statement is global (selects across grid members), but the join result is local (the join
resides on the local node). You may find it useful to join fact and dimension tables, to
join tables that are a similar size and whose data are distributed based on the join key
or to join tables of a global cache group based on a primary key or foreign key
relationship. Use the GlobalLocalJoin optimizer flag to enable a global query with
local join.

Global queries with local joins can join cache tables, global cache tables, noncache
tables with the same definition, views and materialized views. Global queries with
local joins can include sequences.

A global query executed in serializable isolation belongs to the global transaction of
the SELECT statement. A global query executed in read committed isolation is
executed in its own transaction on the remote nodes.

These operations in a global query are executed locally in each grid member:

■ Joins

■ Derived tables

■ Views

Performing global queries on a cache grid

6-10 Oracle In-Memory Database Cache User's Guide

■ GROUP BY, HAVING, ORDER BY and DISTINCT clauses in a subquery

These operations in the main query of a global query are executed globally:

■ GROUP BY clause and aggregation

■ ORDER BY clause

■ DISTINCT clause

■ HAVING clause. This clause cannot contain a join.

Synonyms are resolved on the node where the query originates.

Before executing a global query with local join, turn autocommit off and call the
ttOptSetFlag built-in procedure to set the GlobalLocalJoin optimizer flag to 1:

autocommit off;
CALL ttOptSetFlag('GlobalLocalJoin', 1)

Global queries with local joins have these restrictions:

■ The query cannot include the ROWNUM expression.

■ The query cannot include a set operator.

■ The query cannot include the WITH clause.

■ The query cannot be used with GROUPING SETS, CUBE, ROLLUP, GROUPING,
GROUPING_ID, or GROUP_ID.

■ The query cannot include analytic SQL functions.

■ The PassThrough connection attribute must be set to 0.

■ The query cannot be performed on the standby database of an active standby grid
member.

Obtaining information about the location of data in the cache grid
You may wish to execute a global query without changing the location of the data.You
can use SQL functions to determine which grid node contains the information and
then execute a query for the information from that node.

Use these SQL functions in a global query to obtain information about the location of
data in the cache grid:

■ TTGRIDMEMBERID() - Returns the node ID of the node on which the query is
executed.

■ TTGRIDNODENAME() - Returns the name of the node on which the query is
executed.

■ TTGRIDUSERASSIGNEDNAME() - Returns the user-assigned name of the node on
which the query is executed. The user assigns the name when the ttGridAttach
built-in procedure is called. If you are using Oracle Clusterware, you do not call
ttGridAttach directly and the user-assigned name is generated by TimesTen.

These functions can be used in a SELECT statement and in these clauses of a SELECT
statement:

■ WHERE clause

■ GROUP BY clause

■ ORDER BY clause

Performing global queries on a cache grid

Creating Other Cache Grid Members 6-11

Figure 6–1 shows a cache grid whose members have user-assigned names alone1,
alone2, and an active standby pair on nodes cacheact and cachestand. Queries
do not retrieve data from the standby database. The standby database has the same
data as the active database.

Figure 6–1 Location of data in a cache grid

The following example shows a global query that retrieves employee_id, the
user-assigned node name, and the member ID from the employee table from the grid
members.

autocommit off;
CALL ttOptSetFlag('GlobalProcessing', 1);
SELECT employee_id, TTGRIDUSERASSIGNEDNAME(), TTGRIDMEMBERID() FROM employees;
COMMIT;
< 100, alone1, 1>
< 101, alone2, 2>
< 102, cacheact, 3>
< 103, alone1, 1>
< 104, cacheact, 3>
...

The rows that are returned show which grid node and member owns each row of the
cache instance. Subsequent queries can access the appropriate node without changing
the ownership of the data. For example, execute this query on grid member
cacheact, including TTGRIDUSERASSIGNEDNAME() in the query to verify that
cacheact is the grid where the query is executed:

SELECT employee_id, last_name, hire_date , TTGRIDUSERASSIGNEDNAME()
 FROM employees
 WHERE employee_id=104;
< 104, Ernst, 1991-05-21 00:00:00, cacheact >

For more information about TTGRIDMEMBERID(), TTGRIDNODENAME() and
TTGRIDUSERASSIGNEDNAME(), see "Cache grid functions" in Oracle TimesTen
In-Memory Database SQL Reference.

alone1

Oracle
database

alone2 cacheact cachestand

<100>
<103>

<102>
<104>

<101> <102>
<104>

Adding other elements to a cache grid or grid member

6-12 Oracle In-Memory Database Cache User's Guide

Adding other elements to a cache grid or grid member
If a database that contains a global cache group is attached to a cache grid, a
subsequent database can attach to the same grid and become a grid member only if it
contains a global cache group with the same definition as the global cache group in the
database that is attached to the grid. The subsequent database cannot attach to the
same grid if it contains more or fewer global cache groups than the database that is
attached to the grid. Each database can contain a different number of local cache
groups with non-matching definitions between the databases.

Before you can create a new dynamic AWT global cache group in a TimesTen database
that is attached to a cache grid, stop the replication agent on the database. Then restart
the replication agent after creating the global cache group. The new global cache group
cannot be manually or dynamically loaded, and its cache tables cannot be updated
until the cache group has been created with the same definition in all the grid
members. In the standalone databases and the active database, create the new global
cache group manually. For the standby database and the read-only subscriber
databases, use the ttDestroy utility to drop the databases and a ttRepAdmin
-duplicate utility command to re-create the databases so that they contain the new
global cache group.

7

Managing a Caching Environment 7-1

7Managing a Caching Environment

This chapter describes how to manage and monitor various aspects of a caching
system such as cache grids, cache groups and the cache agent process. It includes the
following topics:

■ Checking the status of the cache and replication agents

■ Monitoring cache groups and cache grids

■ Managing a caching environment with Oracle objects

■ Impact of failed autorefresh operations on TimesTen databases

■ Dropping Oracle objects used by autorefresh cache groups

■ Monitoring the cache administration user's tablespace

■ Recovering after failure of a grid node

■ Backing up and restoring a database with cache groups

Checking the status of the cache and replication agents
You can use either the ttAdmin or ttStatus utility to check whether the TimesTen
cache agent and replication agent processes are running as well as determine each
agent's start policy.

Example 7–1 Using ttAdmin to determine the cache and replication agents status

You can use a ttAdmin -query utility command to determine whether the cache
and replication agents are running, and the cache and replication agent start policies
for a TimesTen database:

% ttAdmin -query cachealone1
RAM Residence Policy : inUse
Replication Agent Policy : manual
Replication Manually Started : True
Cache Agent Policy : always
Cache Agent Manually Started : True

For more information about the ttAdmin utility, see "ttAdmin" in Oracle TimesTen
In-Memory Database Reference.

Example 7–2 Using ttStatus to determine the cache and replication agents status

You can use the ttStatus utility to determine whether the cache and replication
agents are running, and the cache and replication agent start policies for all TimesTen
databases in the installed instance:

Checking the status of the cache and replication agents

7-2 Oracle In-Memory Database Cache User's Guide

% ttStatus
TimesTen status report as of Thu May 7 13:42:01 2009

Daemon pid 9818 port 4173 instance myinst
TimesTen server pid 9826 started on port 4175
--
Data store /users/OracleCache/alone1
There are 38 connections to the data store
Shared Memory KEY 0x02011c82 ID 895844354
PL/SQL Memory KEY 0x03011c82 ID 895877123 Address 0x10000000
Type PID Context Connection Name ConnID
Cache Agent 1019 0x0828f840 Handler 2
Cache Agent 1019 0x083a3d40 Timer 3
Cache Agent 1019 0x0842d820 Aging 4
Cache Agent 1019 0x08664fd8 Garbage Collector(-1580741728) 5
Cache Agent 1019 0x084d6ef8 Marker(-1580213344) 6
Cache Agent 1019 0xa5bb8058 DeadDsMonitor(-1579684960) 7
Cache Agent 1019 0x088b49a0 CacheGridEnv 14
Cache Agent 1019 0x0896b9d0 CacheGridSend 15
Cache Agent 1019 0x089fb020 CacheGridSend 16
Cache Agent 1019 0x08a619f8 CacheGridSend 17
Cache Agent 1019 0x08ace538 CacheGridRec 18
Cache Agent 1019 0x08b42e88 CacheGridRec 19
Cache Agent 1019 0x08bb77d8 CacheGridRec 20
Cache Agent 1019 0x08c2c128 CacheGridRec 21
Cache Agent 1019 0x08ca0a78 CacheGridRec 22
Cache Agent 1019 0x08d153c8 CacheGridRec 23
Cache Agent 1019 0x08d89d18 CacheGridRec 24
Cache Agent 1019 0x08dfe668 CacheGridRec 25
Cache Agent 1019 0x08e72fb8 CacheGridRec 26
Cache Agent 1019 0x08ee8020 CacheGridRec 27
Cache Agent 1019 0x08f5d088 CacheGridRec 28
Cache Agent 1019 0x08fd23f8 CacheGridRec 29
Cache Agent 1019 0x09047768 CacheGridRec 30
Replication 18051 0x08c3d900 RECEIVER 8
Replication 18051 0x08b53298 REPHOLD 9
Replication 18051 0x08af8138 REPLISTENER 10
Replication 18051 0x08a82f20 LOGFORCE 11
Replication 18051 0x08bce660 TRANSMITTER 12
Subdaemon 9822 0x080a2180 Manager 2032
Subdaemon 9822 0x080ff260 Rollback 2033
Subdaemon 9822 0x08548c38 Flusher 2034
Subdaemon 9822 0x085e3b00 Monitor 2035
Subdaemon 9822 0x0828fc10 Deadlock Detector 2036
Subdaemon 9822 0x082ead70 Checkpoint 2037
Subdaemon 9822 0x08345ed0 Aging 2038
Subdaemon 9822 0x083a1030 Log Marker 2039
Subdaemon 9822 0x083fc190 AsyncMV 2040
Subdaemon 9822 0x084572f0 HistGC 2041
Replication policy : Manual
Replication agent is running.
Cache Agent policy : Always
TimesTen's Cache agent is running for this data store
PL/SQL enabled.
--
The information displayed by the ttStatus utility include the following that pertains
to IMDB Cache for each TimesTen database in the installed instance:

■ The names of the cache agent process threads that are connected to the TimesTen
database

Monitoring cache groups and cache grids

Managing a Caching Environment 7-3

■ The names of the replication agent process threads that are connected to the
TimesTen database

■ Status on whether the cache agent is running

■ Status on whether the replication agent is running

■ The cache agent start policy

■ The replication agent start policy

For more information about the ttStatus utility, see "ttStatus" in Oracle TimesTen
In-Memory Database Reference.

Cache agent and replication connections
When a connection from the cache agent to the Oracle database fails, the cache agent
attempts to connect every 10 seconds. If the cache agent cannot connect to the Oracle
database, the cache agent restarts after 10 minutes. This behavior repeats forever.

When a connection from the replication agent to the Oracle database fails, the
replication agent attempts to reconnect to the Oracle database after 120 seconds. If it
cannot reconnect after 120 seconds, the replication agent stops and does not restart.

If Fast Application Notification (FAN) is enabled on the Oracle database, the cache
agent and the replication agent receive immediate notification of connection failures. If
FAN is not enabled, the agents may wait until a TCP timeout occurs before becoming
aware that the connection has failed.

If the Oracle Real Application Clusters (Oracle RAC) is enable on the Oracle database,
along with FAN and Transparent Application Failover (TAF), then TAF manages the
connection to a new Oracle instance. See Chapter 10, "Using Oracle In-Memory
Database Cache in an Oracle RAC Environment".

Monitoring cache groups and cache grids
The following sections describe how to obtain information about cache grids and
cache groups, and how to monitor the status of cache group operations:

■ Using the ttIsql utility's cachegroups command

■ Monitoring autorefresh operations on cache groups

■ Monitoring AWT cache groups

■ Obtaining information for a cache grid

■ Tracking DDL statements issued on cached Oracle tables

Using the ttIsql utility's cachegroups command
You can obtain information about cache groups in a TimesTen database using the
ttIsql utility's cachegroups command.

Example 7–3 ttIsql utility's cachegroups command

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> cachegroups;

Cache Group CACHEUSER.RECENT_SHIPPED_ORDERS:

 Cache Group Type: Read Only

Monitoring cache groups and cache grids

7-4 Oracle In-Memory Database Cache User's Guide

 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: On
 Autorefresh Interval: 1440 Minutes
 Autorefresh Status: ok
 Aging: Timestamp based uses column WHEN_SHIPPED lifetime 30 days cycle 24 hours
on

 Root Table: ORATT.ORDERS
 Table Type: Read Only

Cache Group CACHEUSER.SUBSCRIBER_ACCOUNTS:

 Cache Group Type: Asynchronous Writethrough global (Dynamic)
 Autorefresh: No
 Aging: LRU on

 Root Table: ORATT.SUBSCRIBER
 Table Type: Propagate

Cache Group CACHEUSER.WESTERN_CUSTOMERS:

 Cache Group Type: User Managed
 Autorefresh: No
 Aging: No aging defined

 Root Table: ORATT.ACTIVE_CUSTOMER
 Where Clause: (oratt.active_customer.region = 'West')
 Table Type: Propagate

 Child Table: ORATT.ORDERTAB
 Table Type: Propagate

 Child Table: ORATT.ORDERDETAILS
 Where Clause: (oratt.orderdetails.quantity >= 5)
 Table Type: Not Propagate

 Child Table: ORATT.CUST_INTERESTS
 Table Type: Read Only

3 cache groups found.

The information displayed by the ttIsql utility's cachegroups command include:

■ Cache group type, including whether the cache group is dynamic or global

■ Autorefresh attributes (mode, state, interval) and status, if applicable

■ Aging policy, if applicable

■ Name of root table and, if applicable, name of child tables

■ Cache table WHERE clause, if applicable

■ Cache table attributes (read-only, propagate, not propagate)

For more information about the ttIsql utility's cachegroups command, see "ttIsql"
in Oracle TimesTen In-Memory Database Reference.

Monitoring cache groups and cache grids

Managing a Caching Environment 7-5

Monitoring autorefresh operations on cache groups
TimesTen offers several mechanisms to obtain information and statistics about
autorefresh operations on cache groups. See "Monitoring autorefresh cache groups" in
Oracle TimesTen In-Memory Database Troubleshooting Guide.

Monitoring AWT cache groups
TimesTen offers several mechanisms to obtain information and statistics about
operations in AWT cache groups. See "AWT performance monitoring" in Oracle
TimesTen In-Memory Database Troubleshooting Guide.

Configuring a transaction log file threshold for AWT cache groups
The replication agent uses the transaction log to determine which updates on cache
tables in AWT cache groups have been propagated to the cached Oracle tables and
which updates have not. If updates are not being automatically propagated to Oracle
because of a failure, transaction log files accumulate on disk. Examples of a failure that
prevents propagation are that the replication agent is not running or the Oracle server
is unavailable. For more information about accumulation of transaction log files, see
"Monitoring accumulation of transaction log files" in Oracle TimesTen In-Memory
Database Operations Guide.

You can call the ttCacheAWTThresholdSet built-in procedure as the cache
administration user to set a threshold for the number of transaction log files that can
accumulate before TimesTen stops tracking updates on cache tables in AWT cache
groups. The default threshold is 0. This built-in procedure can only be called if the
TimesTen database contains AWT cache groups.

After the threshold has been exceeded, you need to manually synchronize the cache
tables with the cached Oracle tables using an UNLOAD CACHE GROUP statement
followed by a LOAD CACHE GROUP statement. TimesTen may purge transaction log
files even if they contain updates that have not been propagated to the cached Oracle
tables.

Example 7–4 Setting a transaction log file threshold for AWT cache groups

In this example, if the number of transaction log files that contain updates on cache
tables in AWT cache groups exceeds 5, TimesTen stops tracking updates and can then
purge transaction log files that may contain unpropagated updates:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheAWTThresholdSet(5);

You can call the ttCacheAWTThresholdGet built-in procedure to determine the
current transaction log file threshold setting:

Command> CALL ttCacheAWTThresholdGet;
< 5 >
Command> exit

Obtaining information for a cache grid
You can use the following mechanisms to display information on any cache grid and
their grid members:

■ Call the ttGridInfo built-in procedure as the cache manager user to return the
grid name, cache administration user name, operating system platform, and

Monitoring cache groups and cache grids

7-6 Oracle In-Memory Database Cache User's Guide

TimesTen major release number for a specified cache grid or all existing cache
grids:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttGridInfo('ttGrid');
< TTGRID, CACHEUSER, Linux Intel x86, 32-bit, 11, 2, 1 >

For more information about the ttGridInfo built-in procedure, see "ttGridInfo"
in Oracle TimesTen In-Memory Database Reference.

■ Call the ttGridNodeStatus built-in procedure as the cache manager user to
return the grid name, member ID, node number, indication of whether the node is
attached to the grid, host name, node name, IP address, and cache agent TCP/IP
port number for all members of a specified cache grid or all existing cache grids:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttGridNodeStatus;
< TTGRID, 1, 1, T, sys1, TTGRID_alone1_1, 140.87.0.201, 5001, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL> >
< TTGRID, 2, 1, T, sys2, TTGRID_alone2_2, 140.87.0.202, 5002, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL> >
< TTGRID, 3, 1, T, sys3, TTGRID_cacheact_3A, 140.87.0.203, 5003, T, sys4,
TTGRID_cachestand_3B, 140.87.0.204, 5004 >

For more information about the ttGridNodeStatus built-in procedure, see
"ttGridNodeStatus" in Oracle TimesTen In-Memory Database Reference.

Suspending global AWT cache group operations
You can use the ttGridGlobalCGSuspend built-in procedure to temporarily block
these operations for global AWT cache groups:

■ Dynamic loading

■ Deleting cache instances

Use the ttGridGlobalCGResume built-in procedure to re-enable these operations.

Tracking DDL statements issued on cached Oracle tables
When a DDL statement is issued on a cached Oracle table, this statement can be
tracked in the Oracle TT_version_DDL_L table when the Oracle TT_version_
schema-ID_DDL_T trigger is fired to insert a row into the table, where version is an
internal TimesTen version number and schema-ID is the ID of user that owns the
cached Oracle table. A trigger is created for each Oracle user that owns cached Oracle
tables. One DDL tracking table is created to store DDL statements issued on any
cached Oracle table. The cache administration user owns the TT_version_DDL_L
table and the TT_version_schema-ID_DDL_T trigger.

To enable tracking of DDL statements issued on cached Oracle tables, call the
ttCacheDDLTrackingConfig built-in procedure as the cache manager user. By
default, DDL statements are not tracked.

For more information about the ttCacheDDLTrackingConfig built-in procedure,
see "ttCacheDDLTrackingConfig" in Oracle TimesTen In-Memory Database Reference.

Example 7–5 Enabling tracking of DDL statements issued on cached Oracle tables

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheDDLTrackingConfig('enable');

Monitoring cache groups and cache grids

Managing a Caching Environment 7-7

The TT_version_DDL_L table and TT_version_schema-ID_DDL_T trigger are
automatically created if the cache administration user has been granted the set of
required privileges including RESOURCE and CREATE ANY TRIGGER. These Oracle
objects are created when you create a cache group after tracking of DDL statements
has been enabled.

If you manually created the Oracle objects used to manage the caching of Oracle data,
you need to run the ttIsql utility's cachesqlget command with the ORACLE_
DDL_TRACKING option and the INSTALL flag as the cache manager user. This
command should be run for each Oracle user that owns cached Oracle tables that you
want to track DDL statements on. Running this command generates a SQL*Plus script
used to create the TT_version_DDL_L table and TT_version_schema-ID_DDL_T
trigger in the Oracle database.

After generating the script, use SQL*Plus to run the script as the sys user.

Example 7–6 Creating DDL tracking table and trigger when Oracle objects were
manually created

In this example, the SQL*Plus script generated by the ttIsql utility's cachesqlget
command is saved to the /tmp/trackddl.sql file. The owner of the cached Oracle
table oratt is passed as an argument to the command.

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> cachesqlget ORACLE_DDL_TRACKING oratt INSTALL /tmp/trackddl.sql;
Command> exit

% sqlplus sys as sysdba
Enter password: password
SQL> @/tmp/trackddl
SQL> exit

When you need to issue DDL statements such as CREATE, DROP or ALTER on cached
Oracle tables in order to make changes to the Oracle schema, drop the affected cache
groups before you modify the Oracle schema. Otherwise operations such as
autorefresh may fail. You do not need to drop cache groups if you are altering the
Oracle table to add a column. To issue other DDL statements for Oracle tables, first
perform the following tasks:

1. Use DROP CACHE GROUP statements to drop all cache groups that cache the
affected Oracle tables. If you are dropping an AWT cache group, use the
ttRepSubscriberWait built-in procedure to make sure that all committed
updates on the cache tables have been propagated to the cached Oracle tables
before the cache group is dropped.

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttRepSubscriberWait('_AWTREPSCHEME','TTREP','_ORACLE','sys1',-1);

2. Stop the cache agent.

3. Make the desired changes to the Oracle schema.

4. Use CREATE CACHE GROUP statements to re-create the cache groups, if feasible.

If you want to truncate an Oracle table that is cached in an autorefresh cache group,
perform the following tasks:

1. Use an ALTER CACHE GROUP statement to set the cache group's autorefresh state
to PAUSED.

2. Truncate the Oracle table.

Managing a caching environment with Oracle objects

7-8 Oracle In-Memory Database Cache User's Guide

3. Manually refresh the cache group using a REFRESH CACHE GROUP statement
without a WHERE or WITH ID clause.

Autorefresh operations resume after you refresh the cache group.

You can run the TimesTen_install_dir/oraclescripts/cacheInfo.sql
SQL*Plus script as the cache administration user to display information about the
Oracle objects used to track DDL statements issued on cached Oracle tables:

% cd TimesTen_install_dir/oraclescripts
% sqlplus cacheuser/oracle
SQL> @cacheInfo
*************DDL Tracking Object Information ***************
Common DDL Log Table Name: TT_05_DDL_L
DDL Trigger Name: TT_05_315_DDL_T
Schema for which DDL Trigger is tracking: ORATT
Number of cache groups using the DDL Trigger: 10

The information returned for each Oracle user that owns cached Oracle tables includes
the name of the DDL tracking table, the name of its corresponding DDL trigger, the
name of the user that the DDL trigger is associated with, and the number of cache
groups that cache a table owned by the user associated with the DDL trigger.

If a particular table is cached in more than one grid member, each grid member
contributes to the cache group count. An active standby pair counts as one grid
member. If a cache group contains more than one cache table, each cache table owned
by the user associated with the DDL trigger contributes to the cache group count.

Managing a caching environment with Oracle objects
For an autorefresh cache group, TimesTen creates a change log table and trigger in the
Oracle database for each cache table in the cache group. The trigger is fired for each
committed insert, update or delete operation on the cached Oracle table. The trigger
records the primary key of the updated rows in the change log table. The cache agent
periodically scans the change log table for updated keys and then joins this table with
the cached Oracle table to get a snapshot of the latest updates.

The Oracle objects used to process autorefresh operations can be automatically created
by TimesTen as described in "Automatically create Oracle objects used to manage
caching of Oracle data" on page 3-9 when you create a cache group with the
AUTOREFRESH MODE INCREMENTAL cache group attribute. Alternatively, you can
manually create these objects as described in "Manually create Oracle objects used to
manage caching of Oracle data" on page 3-10 before performing any cache grid or
cache group operation if, for security purposes, you do not want to grant the
RESOURCE and CREATE ANY TRIGGER privileges to the cache administration user
required to automatically create these objects.

Before the Oracle objects can be automatically or manually created, you must:

■ Create a cache administration user in the Oracle database as described in "Create
the Oracle users" on page 3-2.

■ Set the cache administration user name and password in the TimesTen database as
described in "Set the cache administration user name and password" on page 3-14.

■ Start the cache agent as described in "Managing the cache agent" on page 3-17.

For each cache administration user, TimesTen creates the following Oracle tables,
where version is an internal TimesTen version number and object-ID is the ID of
the cached Oracle table:

Managing a caching environment with Oracle objects

Managing a Caching Environment 7-9

For each cache administration user, TimesTen creates the following Oracle triggers,
where version is an internal TimesTen version number, object-ID is the ID of the
cached Oracle table, and schema-ID is the ID of user who owns the cached Oracle
table:

Table Name Description

TT_version_AGENT_STATUS Created when the first cache group is created.
Stores information about each Oracle table
cached in an autorefresh cache group.

TT_version_AR_PARAMS Created when the cache administration user
name and password is set. Stores the action to
take when the cache administration user's
tablespace is full.

TT_version_CACHE_STATS Created when the cache administration user
name and password is set.

TT_version_DATABASES Created when the cache administration user
name and password is set. Stores the
autorefresh status for all TimesTen databases
that cache data from the Oracle database.

TT_version_DB_PARAMS Created when the cache administration user
name and password is set. Stores the cache
agent timeout, recovery method for dead
cache groups, and the cache administration
user's tablespace usage threshold.

TT_version_DBSPECIFIC_PARAMS Internal use.

TT_version_DDL_L Created when the cache administration user
name and password is set. Tracks DDL
statements issued on cached Oracle tables.

TT_version_DDL_TRACKING Created when the cache administration user
name and password is set. Stores a flag
indicating whether tracking of DDL
statements on cached Oracle tables is enabled
or disabled.

TT_version_REPACTIVESTANDBY Created when the first AWT cache group is
created. Tracks the state and roles of TimesTen
databases containing cache tables in an AWT
cache group that are replicated in an active
standby pair replication scheme.

TT_version_REPPEERS Created when the first AWT cache group is
created. Tracks the time and commit sequence
number of the last update on the cache tables
that was asynchronously propagated to the
cached Oracle tables.

TT_version_SYNC_OBJS Created when the first cache group is created.

TT_version_USER_COUNT Created when the first cache group is created.
Stores information about each cached Oracle
table.

TT_version_object-ID_L One change log table is created per Oracle
table cached in an autorefresh cache group
when the cache group is created. Tracks
updates on the cached Oracle table.

Managing a caching environment with Oracle objects

7-10 Oracle In-Memory Database Cache User's Guide

The Oracle objects used to process asynchronous writethrough operations can be
automatically created by TimesTen as described in "Automatically create Oracle
objects used to manage caching of Oracle data" on page 3-9 when you create an AWT
cache group. Alternatively, you can manually create these objects as described in
"Manually create Oracle objects used to manage caching of Oracle data" on page 3-10
before performing any cache grid or cache group operation if, for security purposes,
you do not want to grant the RESOURCE privilege to the cache administration user
required to automatically create these objects.

For the timesten user, TimesTen creates the following Oracle tables:

For each cache administration user, TimesTen creates the following Oracle tables,
where version is an internal TimesTen version number and grid-ID is the ID
number of the cache grid:

Trigger Name Description

TT_version_REPACTIVESTANDBY_T Created when the first AWT cache group is
created. When fired, inserts rows into the TT_
version_REPACTIVESTANDBY table.

TT_version_object-ID_T One trigger is created per Oracle table cached
in an autorefresh cache group when the cache
group is created. Fired for each insert, delete
or update operation issued on the cached
Oracle table to track operations in the TT_
version_object-ID_L change log table.

TT_version_schema-ID_DDL_T One trigger for each user who owns cached
Oracle tables. Created when a cache group is
created after tracking of DDL statements has
been enabled. Fired for each DDL statement
issued on a cached Oracle table to track
operations in the TT_version_DDL_L table.

Table Name Description

TT_GRIDID Created by running the SQL*Plus script
initCacheGlobalSchema.sql. Stores the
ID number assigned to the most recently
created cache grid.

TT_GRIDINFO Created by running the SQL*Plus script
initCacheGlobalSchema.sql. Stores the
grid name, grid ID, and name of the cache
administration user for all existing cache
grids.

Table Name Description

TT_version_grid-name_grid-IDCGNODEID One table is created per cache grid
when a grid is created. Stores the
operating system name and version,
and TimesTen release number.

TT_version_grid-name_grid-IDCGNODEINFO One table is created per cache grid
when a grid is created. Stores the host
name, member name, IP address, and
cache agent TCP/IP port of all attached
grid members.

Impact of failed autorefresh operations on TimesTen databases

Managing a Caching Environment 7-11

Impact of failed autorefresh operations on TimesTen databases
A change log table is created in the cache administration user's tablespace for each
Oracle table that is cached in an autorefresh cache group. For each update operation
issued on these cached Oracle tables, a row is inserted into their change log table to
keep track of updates that need to be applied to the TimesTen cache tables upon the
next incremental autorefresh cycle. TimesTen periodically deletes rows in the change
log tables that have been applied to the cache tables.

An Oracle table cannot be cached in more than one cache group within a TimesTen
database. However, an Oracle table can be cached in more than one TimesTen
database. This results in an Oracle table corresponding to multiple TimesTen cache
tables. If updates on cached Oracle tables are not being automatically refreshed into all
of their corresponding cache tables because the cache agent is not running on one or
more of the TimesTen databases that the Oracle tables are cached in, rows in their
change log tables are not deleted by default. The cache agent may not be running on a
particular TimesTen database because the agent was explicitly stopped or never
started, the database was destroyed, or the installed instance that the database resides
in is down. As a result, rows accumulate in the change log tables and degrade the
performance of autorefresh operations on cache tables in TimesTen databases where
the cache agent is running. This can also cause the cache administration user's
tablespace to fill up.

You can set a cache agent timeout to prevent rows from accumulating in the change
log tables and not being deleted. The following criteria must be met in order for
TimesTen to delete rows in the change log tables when the cache agent is not running
on a TimesTen database and a cache agent timeout is set:

■ Oracle tables are cached in autorefresh cache groups within more than one
TimesTen database

■ The cache agent is running on at least one of the TimesTen databases but is not
running on at least another database

■ Rows in the change log tables have been applied to the cache tables on all
TimesTen databases where the cache agent is running

■ For those databases where the cache agent is not running, the agent process has
been down for a period of time that exceeds the cache agent timeout

Call the ttCacheConfig built-in procedure as the cache manager user from any of
the TimesTen databases that cache data from the Oracle database. Pass the
AgentTimeout string to the Param parameter and the timeout setting as a numeric
string to the Value parameter. Do not pass in any values to the tblOwner and
tblName parameters as they are not applicable to setting a cache agent timeout.

Example 7–7 Setting a cache agent timeout

In the following example, the cache agent timeout is set to 900 seconds (15 minutes):

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"

TT_version_grid-name_grid-IDCGGROUPDEFS One table is created per cache grid
when a grid is created. Stores the cache
group name, owner, reference count
and SQL text of all global cache groups
in standalone TimesTen databases or
active standby pairs that are associated
with the cache grid.

Table Name Description

Impact of failed autorefresh operations on TimesTen databases

7-12 Oracle In-Memory Database Cache User's Guide

Command> CALL ttCacheConfig('AgentTimeout',,,'900');

To determine the current cache agent timeout setting, call ttCacheConfig passing
only the AgentTimeout string to the Param parameter:

Command> CALL ttCacheConfig('AgentTimeout');
< AgentTimeout, <NULL>, <NULL>, 900 >

The default cache agent timeout is 0 seconds which means rows in the change log
tables are not deleted until they have been applied to all its cache tables. If you set the
cache agent timeout to a value between 1 and 600 seconds, the timeout is set to 600
seconds. The cache agent timeout applies to all TimesTen databases that cache data
from the same Oracle database and have the same cache administration user name
setting.

When determining a proper cache agent timeout setting, consider the time it takes to
load the TimesTen database into memory, the time to start the cache agent process,
potential duration of network outages, and anticipated duration of planned
maintenance activities.

Each TimesTen database, and all of its autorefresh cache groups have an autorefresh
status to determine whether any deleted rows from the change log tables were not
applied to the cache tables in the cache groups. If rows were deleted from the change
log tables and not applied to some cache tables because the cache agent on the
database was down for a period of time that exceeded the cache agent timeout, those
cache tables are no longer synchronized with the cached Oracle tables. Subsequent
updates on the cached Oracle tables are not automatically refreshed into the cache
tables until the accompanying cache group is recovered.

The following are the possible statuses for an autorefresh cache group:

■ ok: All of the deleted rows from the change log tables were applied to its cache
tables. Incremental autorefresh operations continue to occur on the cache group.

■ dead: Some of the deleted rows from the change log tables were not applied to its
cache tables so the cache tables are not synchronized with the cached Oracle
tables. Autorefresh operations have ceased on the cache group and will not
resume until the cache group has been recovered.

■ recovering: The cache group is being recovered. Once recovery completes, the
cache tables are synchronized with the cached Oracle tables, the cache group's
autorefresh status is set to ok, and incremental autorefresh operations resume on
the cache group.

The following are the possible autorefresh statuses for a TimesTen database:

■ alive: All of its autorefresh cache groups have an autorefresh status of OK.

■ dead: All of its autorefresh cache groups have an autorefresh status of dead.

■ recovering: At least one of its autorefresh cache groups have an autorefresh
status of recovering.

If the cache agent on a TimesTen database is down for a period of time that exceeds
the cache agent timeout, the autorefresh status of the database is set to dead. Also, the
autorefresh status of all autorefresh cache groups within that database are set to dead.

If you have enabled SNMP traps, a trap is thrown when the autorefresh status of a
database is set to dead.

Call the ttCacheDbCgStatus built-in procedure as the cache manager user to
determine the autorefresh status of a cache group and its accompanying TimesTen

Impact of failed autorefresh operations on TimesTen databases

Managing a Caching Environment 7-13

database. Pass the owner of the cache group to the cgOwner parameter and the name
of the cache group to the cgName parameter.

Example 7–8 Determining the autorefresh status of a cache group and TimesTen
database

In the following example, the autorefresh status of the database is alive and the
autorefresh status of the cacheuser.customer_orders read-only cache group is
ok:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheDbCgStatus('cacheuser','customer_orders');
< alive, ok >

To view only the autorefresh status of the database and not of a particular cache
group, call ttCacheDbCgStatus without any parameters:

Command> CALL ttCacheDbCgStatus;
< dead, <NULL> >

If the autorefresh status of a cache group is ok, its cache tables are being automatically
refreshed based on its autorefresh interval. If the autorefresh status of a database is
alive, the autorefresh status of all its autorefresh cache groups are ok.

If the autorefresh status of a cache group is dead, its cache tables are no longer being
automatically refreshed when updates are committed on the cached Oracle tables. The
cache group must be recovered in order to resynchronize the cache tables with the
cached Oracle tables.

You can configure a recovery method for cache groups whose autorefresh status is
dead.

Call the ttCacheConfig built-in procedure as the cache manager user from any of
the TimesTen databases that cache data from the Oracle database. Pass the
DeadDbRecovery string to the Param parameter and the recovery method as a string
to the Value parameter. Do not pass in any values to the tblOwner and tblName
parameters as they are not applicable to setting a recovery method for dead cache
groups.

The following are the valid recovery methods:

■ Normal: When the cache agent starts, a full autorefresh operation is performed on
cache groups whose autorefresh status is dead in order to recover those cache
groups. This is the default recovery method.

■ Manual: For each explicitly loaded cache group whose autorefresh status is dead,
a REFRESH CACHE GROUP statement must be issued in order to recover these
cache groups after the cache agent starts.

For each dynamic cache group whose autorefresh status is dead, a REFRESH
CACHE GROUP or UNLOAD CACHE GROUP statement must be issued in order to
recover these cache groups after the cache agent starts.

■ None: Cache groups whose autorefresh status is dead must be dropped and then
re-created after the cache agent starts in order to recover them.

Example 7–9 Configuring the recovery method for dead cache groups

In the following example, the recovery method is set to Manual for cache groups
whose autorefresh status is dead:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"

Dropping Oracle objects used by autorefresh cache groups

7-14 Oracle In-Memory Database Cache User's Guide

Command> CALL ttCacheConfig('DeadDbRecovery',,,'Manual');

To determine the current recovery method for dead cache groups, call
ttCacheConfig passing only the DeadDbRecovery string to the Param parameter:

Command> CALL ttCacheConfig('DeadDbRecovery');
< DeadDbRecovery, <NULL>, <NULL>, manual >

The recovery method applies to all autorefresh cache groups in all TimesTen databases
that cache data from the same Oracle database and have the same cache
administration user name setting.

If you have enabled SNMP traps, a trap is thrown when the cache agent starts and the
recovery method is set to Manual or None to alert you to manually issue a statement
such as REFRESH CACHE GROUP or DROP CACHE GROUP in order to recover cache
groups in the database whose autorefresh status is dead.

When a cache group begins the recovery process, its autorefresh status is changed
from dead to recovering, and the status of the accompanying TimesTen database is
changed to recovering, if it is currently dead.

After the cache group has been recovered, its autorefresh status is changed from
recovering to ok. Once all cache groups have been recovered and their autorefresh
statuses are ok, the status of the accompanying TimesTen database is changed from
recovering to alive.

A full autorefresh operation requires more system resources to process than an
incremental autorefresh operation when there is a small volume of updates to refresh
and a large number of rows in the cache tables. If you need to bring a TimesTen
database down for maintenance activities and the volume of updates anticipated
during the downtime on the Oracle tables that are cached in autorefresh cache groups
is small, you can consider temporarily setting the cache agent timeout to 0. When the
database is brought back up and the cache agent restarted, incremental autorefresh
operations resumes on cache tables in autorefresh cache groups. Full autorefresh
operations are avoided because the autorefresh status on the accompanying cache
groups were not changed from ok to dead so those cache groups do not need to go
through the recovery process. Make sure to set the cache agent timeout back to its
original value once the database is back up and the cache agent has been started.

Dropping Oracle objects used by autorefresh cache groups
If a TimesTen database that contains autorefresh cache groups becomes unavailable,
Oracle objects such as change log tables and triggers used to implement autorefresh
operations continue to exist in the Oracle database. A TimesTen database is
unavailable, for example, when the TimesTen system is taken offline or the database
has been destroyed without dropping its autorefresh cache groups.

Oracle objects used to implement autorefresh operations also continue to exist in the
Oracle database when a TimesTen database is no longer being used but still contains
autorefresh cache groups. Rows continue to accumulate in the change log tables. This
impacts autorefresh performance on other TimesTen databases. Therefore, it is
desirable to drop these Oracle objects associated with the unavailable or abandoned
TimesTen database.

Run the TimesTen_install_dir/oraclescripts/cacheCleanUp.sql
SQL*Plus script as the cache administration user to drop the Oracle objects used to
implement autorefresh operations. The host name of the TimesTen system and the
TimesTen database path name are passed as arguments to the cacheCleanUp.sql
script. You can run the cacheInfo.sql script as the cache administration user to

Monitoring the cache administration user's tablespace

Managing a Caching Environment 7-15

determine the host name of the TimesTen system and the database path name. The
cacheInfo.sql script can also be used to determine whether any objects used to
implement autorefresh operations exist in the Oracle database.

Example 7–10 Dropping Oracle objects for autorefresh cache groups

In the following example, the TimesTen database still contained one read-only cache
group customer_orders with cache tables oratt.customer and oratt.orders
when the database was dropped. The cacheCleanUp.sql script drops the change
log tables and triggers associated with the two cache tables.

% cd TimesTen_install_dir/oraclescripts
% sqlplus cacheuser/oracle
SQL> @cacheCleanUp "sys1" "/users/OracleCache/alone1"

*****************************OUTPUT**************************************
Performing cleanup for object_id: 69959 which belongs to table : CUSTOMER
Executing: delete from tt_05_agent_status where host = sys1 and datastore =
/users/OracleCache/alone1 and object_id = 69959
Executing: drop table tt_05_69959_L
Executing: drop trigger tt_05_69959_T
Executing: delete from tt_05_user_count where object_id = object_id1
Performing cleanup for object_id: 69966 which belongs to table : ORDERS
Executing: delete from tt_05_agent_status where host = sys1 and datastore =
/users/OracleCache/alone1 and object_id = 69966
Executing: drop table tt_05_69966_L
Executing: drop trigger tt_05_69966_T
Executing: delete from tt_05_user_count where object_id = object_id1
**

Monitoring the cache administration user's tablespace
The following sections describe how to manage the cache administration user’s
tablespace:

■ Receiving notification on tablespace usage

■ Recovering from a full tablespace

Receiving notification on tablespace usage
In order to avoid a full tablespace, you can configure TimesTen to return a warning to
the application when an update operation such as an UPDATE, INSERT or DELETE
statement is issued on cached Oracle tables and causes the usage of the cache
administration user's tablespace to exceed a specified threshold.

Call the ttCacheConfig built-in procedure as the cache manager user from any of
the TimesTen databases that cache tables from the Oracle database. Pass the
TblSpaceThreshold string to the Param parameter and the threshold as a numeric
string to the Value parameter. The threshold value represents the percentage of space
used in the cache administration user's tablespace upon which a warning is returned
to the application when an update operation is issued on a cached Oracle table. Do not
pass in any values to the tblOwner and tblName parameters as they are not
applicable to setting a warning threshold for the usage of the cache administration
user's tablespace.

The cache administration user must be granted the SELECT privilege on the Oracle
SYS.DBA_DATA_FILES table in order for the cache manager user to set a warning
threshold on the cache administration user's tablespace usage, and for the cache

Monitoring the cache administration user's tablespace

7-16 Oracle In-Memory Database Cache User's Guide

administration user to monitor its tablespace to determine if the configured threshold
has been exceeded.

Example 7–11 Setting a cache administration user's tablespace usage warning
threshold

The following example configures a warning to be returned to the application that
issues an update operation on a cached Oracle table if it results in the usage of the
cache administration user's tablespace to exceed 80 percent:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheConfig('TblSpaceThreshold',,,'80');

To determine the current cache administration user's tablespace usage warning
threshold, call ttCacheConfig passing only the TblSpaceThreshold string to the
Param parameter:

Command> CALL ttCacheConfig('TblSpaceThreshold');
< TblspaceThreshold, <NULL>, <NULL>, 80 >

The default cache administration user's tablespace usage warning threshold is 0
percent which means that no warning is returned to the application regardless of the
tablespace usage. The cache administration user's tablespace usage warning threshold
applies to all TimesTen databases that cache tables from the same Oracle database and
have the same cache administration user name setting.

If you have enabled SNMP traps, a trap is thrown when the cache administration
user's tablespace usage has exceeded the configured threshold.

Recovering from a full tablespace
By default, when the cache administration user's tablespace is full, an error is returned
to the Oracle application when it attempts a DML operation, such as an UPDATE,
INSERT or DELETE statement, on a particular cached Oracle table.

Rather than TimesTen returning an error to the Oracle application when the cache
administration user's tablespace is full, you can configure TimesTen to delete existing
rows from the change log tables to make space for new rows when an update
operation is issued on a particular cached Oracle table. If some of the deleted change
log table rows have not been applied to the TimesTen cache tables, a full autorefresh
operation is performed on those cache tables in each TimesTen database that contains
the tables upon the next autorefresh cycle.

Call the ttCacheConfig built-in procedure as the cache manager user from any of
the TimesTen databases that cache tables from the Oracle database. Pass the
TblSpaceFullRecovery string to the Param parameter, the owner and name of the
cached Oracle table to the tblOwner and tblName parameters, respectively, on
which you want to configure an action to take if the cache administration user's
tablespace becomes full, and the action itself as a string to the Value parameter.

The following are the valid actions:

■ None: Return an Oracle error to the application when an update operation is
issued on the cached Oracle table. This is the default action.

■ Reload: Delete rows from the change log table and perform a full autorefresh
operation on the cache table upon the next autorefresh cycle when an update
operation is issued on the cached Oracle table.

Recovering after failure of a grid node

Managing a Caching Environment 7-17

Example 7–12 Configuring an action when the cache administration user's tablespace
becomes full

In the following example, rows are deleted from the change log table and a full
autorefresh operation is performed on the cache table upon the next autorefresh cycle
when an update operation is issued on the oratt.customer cached Oracle table
while the cache administration user's tablespace is full:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttCacheConfig('TblSpaceFullRecovery','oratt','customer','Reload');

To determine the current action to take when an update operation is issued on a
particular cached Oracle table if the cache administration user's tablespace is full, call
ttCacheConfig passing only the TblSpaceFullRecovery string to the Param
parameter, and the owner and name of the cached Oracle table to the tblOwner and
tblName parameters, respectively:

Command> CALL ttCacheConfig('TblSpaceFullRecovery','oratt','customer');
< TblSpaceFullRecovery, ORATT, CUSTOMER, reload >

The action to take when update operations are issued on a cached Oracle table while
the cache administration user's tablespace is full applies to all TimesTen databases that
cache tables from the same Oracle database and have the same cache administration
user name setting,

If you have enabled SNMP traps, a trap is thrown when an update operation is issued
on a cached Oracle table and the cache administration user's tablespace is full.

Recovering after failure of a grid node
When a standalone database grid member fails, the cache agent automatically restarts
if the cache agent start policy is manual or always. The grid member is automatically
reattached to the grid when the database recovers. If the cache agent start policy is
norestart, you must restart the cache agent and then call the ttGridAttach
built-in procedure to reattach the member to the grid. See "Set a cache agent start
policy" on page 3-18.

You can verify that a standalone database grid member is attached to the grid by
calling the ttRepStateGet built-in procedure. If it is attached, you should see this
output:

Command> CALL ttRepStateGet;
< IDLE, AVAILABLE >
1 row found.

If the active or the standby database node in an active standby pair grid member fails
when Oracle Clusterware is managing the nodes in the grid, the grid node is
automatically reattached to the grid when the cache agent restarts. For more
information about how Oracle Clusterware handles failures, see "Recovering from
failures" in Oracle TimesTen In-Memory Database Replication Guide.

If the active standby pair grid member is not managed by Oracle Clusterware, then
perform the steps in "Recovering from a failure of the active database" or "Recovering
from a failure of the standby database" in Oracle TimesTen In-Memory Database
Replication Guide. If the cache agent start policy is manual or always, the grid node is
automatically reattached to the grid after the database recovers.). If the cache agent
start policy is norestart, call the ttGridAttach built-in procedure to reattach the
member to the grid.

Backing up and restoring a database with cache groups

7-18 Oracle In-Memory Database Cache User's Guide

Call the ttRepStateGet built-in procedure from the active database to verify that
the active database is available and that the active standby pair is attached to the grid:

Command> CALL ttRepStateGet;
< ACTIVE, AVAILABLE >
1 row found.

For more information, see "ttRepStateGet" in Oracle TimesTen In-Memory Database
Reference.

A multinode failure can occur because of a hardware failure or network failure, for
example. After a multinode failure occurs, call the ttGridAttach built-in procedure
for each member that needs to be reattached. The operation will fail for each grid
member until you call the built-in procedure on the last grid member to be reattached.
Call ttGridAttach again for the grid members that have not yet been attached and
the operation will succeed. This sequence is necessary to prevent a "split-brain"
situation with grid members being unaware of each other’s states.

Backing up and restoring a database with cache groups
Databases containing cache groups can be backed up with the ttBackup utility.
However, restoring this backup requires additional action as the restored data within
the cache groups will be out of date and out of sync with the data in the backend
Oracle database.

■ If the restored database will connect to the same backend Oracle database, then
drop and recreate all cache groups in the restored TimesTen database. If they are
static cache groups, you may be required to reload them. For dynamic cache
groups, the reload is optional as data will be pulled in from Oracle as it is
referenced.

■ If the restored database will connect to a different backend Oracle database than
what it had originally connected with, then perform the following:

1. Specify the cache administrator user name and password with the
ttCacheUidPwdSet built-in procedure.

2. Start the cache agent.

3. Drop all cache groups. You may see errors reported, which can be ignored.

4. Stop the cache agent.

5. Execute the cacheCleanUp.sql SQL*Plus script against the new Oracle
database to remove all leftover objects. Specify the host and path for the
restored TimesTen database.

6. Start the cache agent.

7. Recreate and, if required, reload the cache groups.

If another TimesTen database used to connect to the original backend Oracle database
and will no longer connect and if all cache groups in the TimesTen database were not
cleanly dropped, then execute the cacheCleanUp.sql SQL*Plus script against the

Note: If the restored TimesTen database is not able to connect to any
backend Oracle database, then you will not be able to drop the cache
groups or remove the cached data.

Backing up and restoring a database with cache groups

Managing a Caching Environment 7-19

original Oracle database to remove all leftover objects. Specify the host and path for
the original TimesTen database.

Backing up and restoring a database with cache groups

7-20 Oracle In-Memory Database Cache User's Guide

8

Cleaning up the Caching Environment 8-1

8Cleaning up the Caching Environment

This chapter describes the various tasks that need to be performed in the TimesTen
and Oracle databases to destroy a cache grid and drop cache groups. It includes the
following topics:

■ Detaching a TimesTen database from a cache grid

■ Stopping the replication agent

■ Dropping a cache group

■ Destroying a cache grid

■ Stopping the cache agent

■ Destroying the TimesTen databases

■ Dropping the Oracle users and objects

Detaching a TimesTen database from a cache grid
Call the ttGridDetach built-in procedure to detach a grid member from the cache
grid that it is attached to. If the grid member is an active standby pair, the active and
standby databases must both be detached, and they must be detached separately.
When a grid member has been detached, you can no longer perform operations on its
global cache groups or on their cache tables. The grid member also relinquishes
ownership of all cache instances that it had owned. The cache agent and replication
agent processes cannot be stopped until the database detaches from its cache grid.

From the cachealone1 database, call the ttGridDetach built-in procedure as the
cache manager user to detach the member from the ttGrid cache grid. For example:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttGridDetach;

To make sure that all committed updates on cache tables in the global cache groups in
cachealone1 have been propagated to the cached Oracle tables before the TimesTen

Note: If you are planning to use Oracle Clusterware to manage
active standby pairs in a cache grid, see "Using Oracle Clusterware
with a TimesTen cache grid" in Oracle TimesTen In-Memory Database
Replication Guide.

Also see "Restricted commands and SQL statements" in Oracle
TimesTen In-Memory Database Replication Guide. Use the ttCWAdmin
utility to manage the active standby pair grid members instead of the
built-in procedures discussed in this chapter.

Stopping the replication agent

8-2 Oracle In-Memory Database Cache User's Guide

database is detached from its cache grid, specify the number of seconds to wait before
executing the detach. In this example, the wait is 60 seconds:

Command> CALL ttGridDetach(,,60);

Then after the database has been detached from its grid, the replication agent running
on the database can be stopped.

You can force detach a grid member that becomes unavailable but is still attached to
the grid. A grid member's underlying TimesTen database is unavailable, for example,
when the TimesTen system is taken offline or the database has been destroyed. Call
the ttGridDetach built-in procedure as the cache manager user passing the value 1
to the force parameter from any one of the TimesTen databases that are available
except from the read-only subscriber databases.

Command> CALL ttGridDetach('TTGRID_alone2_2',1);

To determine the names of all attached grid members, call the ttGridNodeStatus
built-in procedure.

You can force detach a set of grid members that become unavailable but are still
attached to the grid by calling the ttGridDetachList built-in procedure as the
cache manager user from any one of the TimesTen databases that are available except
from the read-only subscriber databases. Pass the value 1 to the force parameter.

Command> CALL ttGridDetachList('TTGRID_cacheact_3A TTGRID_cachestand_3B',1);

You can detach all of the grid members by calling the ttGridDetachAll built-in
procedure. In this example, the detach operation waits 60 seconds:

Command> CALL ttGridDetachAll(60);

Stopping the replication agent
Call the ttRepStop built-in procedure to stop the replication agent. This must be
done on each TimesTen database of the active standby pair including any read-only
subscriber databases, and any standalone TimesTen databases that contain AWT cache
groups.

From the cachealone1, cachealone2, cacheactive, cachestandby and
rosubscriber databases, call the ttRepStop built-in procedure as the cache
manager user to stop the replication agent on the database:

Command> CALL ttRepStop;

Dropping a cache group
Use the DROP CACHE GROUP statement to drop a cache group and its cache tables.
Oracle objects used to manage the caching of Oracle data are automatically dropped
when you use the DROP CACHE GROUP statement to drop a cache group, or an ALTER
CACHE GROUP statement to set the autorefresh state to OFF for autorefresh cache
groups.

If you issue a DROP CACHE GROUP statement on a cache group that has an
autorefresh operation in progress:

■ The autorefresh operation stops if the LockWait connection attribute setting is
greater than 0. The DROP CACHE GROUP statement preempts the autorefresh
operation.

Dropping a cache group

Cleaning up the Caching Environment 8-3

■ The autorefresh operation continues if the LockWait connection attribute setting
is 0. The DROP CACHE GROUP statement is blocked until the autorefresh operation
completes or the statement fails with a lock timeout error.

If cache tables are being replicated in an active standby pair and the cache tables are
the only elements that are being replicated, you must drop the active standby pair
using a DROP ACTIVE STANDBY PAIR statement before dropping the cache groups.
If the active standby pair is a grid member, the grid member must be detached from
the grid before dropping the active standby pair.

Execute the following statement as the cache manager user on the cacheactive,
cachestandby and rosubscriber databases to drop the active standby pair
replication scheme:

Command> DROP ACTIVE STANDBY PAIR;
Command> exit

You must unload the data in a global cache group in all grid members before dropping
the cache group. Set the GlobalProcessing optimizer flag to 1 and unload the cache
group:

CALL ttOptSetFlag('GlobalProcessing', 1);
UNLOAD CACHE GROUP subscriber_accounts;

Before you can drop a cache group, you must grant the DROP ANY TABLE privilege to
the cache manager user. Execute the following statement as the instance administrator
on the cachealone1, cachealone2, cacheactive and cachestandby databases
to grant the DROP ANY TABLE privilege to the cache manager user. The following
example shows the SQL statement issued from the cachealone1 database:

% ttIsql cachealone1
Command> GRANT DROP ANY TABLE TO cacheuser;
Command> exit

If you are dropping an AWT cache group, use the ttRepSubscriberWait built-in
procedure to make sure that all committed updates on its cache tables have been
propagated to the cached Oracle tables before dropping the cache group.

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> CALL ttRepSubscriberWait('_AWTREPSCHEME','TTREP','_ORACLE','sys1',-1);

The replication scheme that was created for the AWT cache group to enable
committed updates on its cache tables to be asynchronously propagated to the cached
Oracle tables is automatically dropped when you drop the cache group.

Use a DROP CACHE GROUP statement to drop the cache groups from the standalone
TimesTen databases and the active and standby databases.

Execute the following statement as the cache manager user on the cachealone1,
cachealone2, cacheactive and cachestandby databases to drop the
subscriber_accounts global cache group. The following example shows the SQL
statement issued from the cachealone1 database:

% ttIsql "DSN=cachealone1;UID=cacheuser;PWD=timesten;OraclePWD=oracle"
Command> DROP CACHE GROUP subscriber_accounts;

Destroying a cache grid

8-4 Oracle In-Memory Database Cache User's Guide

Destroying a cache grid
Call the ttGridDestroy built-in procedure to destroy a cache grid. By default, a
cache grid cannot be destroyed if there are existing cache groups or attached grid
members.

From any one of the TimesTen databases, except from the read-only subscriber
databases, call the ttGridDestroy built-in procedure as the cache manager user to
destroy the ttGrid cache grid:

Command> CALL ttGridDestroy('ttGrid');

You can force destroy a cache grid even if a grid member whose TimesTen database
becomes unavailable while it contains cache groups or is attached to the grid. A
TimesTen database is unavailable, for example, when the TimesTen system is taken
offline or the database has been destroyed. Call the ttGridDestroy built-in
procedure as the cache manager user passing the value 1 to the force parameter from
any one of the TimesTen databases except from the read-only subscriber databases.

Command> CALL ttGridDestroy('ttGrid',1);

A cache grid should be destroyed only if it is no longer needed and there is no intent
to attach to it again.

Stopping the cache agent
Call the ttCacheStop built-in procedure to stop the cache agent. This must be done
on the active and standby databases of the active standby pair, and all standalone
TimesTen databases.

From the cachealone1, cachealone2, cacheactive and cachestandby
databases, issue the following built-in procedure call to stop the cache agent on the
database:

Command> CALL ttCacheStop;
Command> exit

The cache agent cannot be stopped if the TimesTen database is still attached to a cache
grid.

Destroying the TimesTen databases
If the TimesTen databases are no longer needed, you can use the ttDestroy utility to
destroy the databases.

The following example shows the ttDestroy utility connecting to and then
destroying the cachealone1 database:

% ttDestroy cachealone1

Note: If the cache agent is stopped immediately after dropping a
cache group, or altering the cache group's autorefresh state to OFF, the
Oracle objects used to manage the caching of Oracle data may not have
been dropped. When the cache agent is restarted, it drops the Oracle
objects that were created for the dropped or altered cache group.

Dropping the Oracle users and objects

Cleaning up the Caching Environment 8-5

Dropping the Oracle users and objects
Use SQL*Plus as the sys user to drop the timesten user, the schema user oratt,
and the cache administration user cacheuser, and all objects such as tables and
triggers owned by these users. Then drop the TT_CACHE_ADMIN_ROLE role, and the
default tablespace cachetblsp used by the timesten user and the cache
administration user including the contents of the tablespace and its data file.

% sqlplus sys as sysdba
Enter password: password
SQL> DROP USER timesten CASCADE;
SQL> DROP USER oratt CASCADE;
SQL> DROP USER cacheuser CASCADE;
SQL> DROP ROLE tt_cache_admin_role;
SQL> DROP TABLESPACE cachetblsp INCLUDING CONTENTS AND DATAFILES;
SQL> exit

Dropping the Oracle users and objects

8-6 Oracle In-Memory Database Cache User's Guide

9

Using the Cache Advisor 9-1

9Using the Cache Advisor

The following sections describe and demonstrate how to use the Oracle In-Memory
Database (IMDB) Cache Advisor:

■ Cache Advisor overview

■ Setting up the Oracle and TimesTen host systems

■ Running a SQL workload application

■ Running the Cache Advisor

■ Viewing the Cache Advisor reports

■ Cleaning up the Oracle and TimesTen databases and host systems

Cache Advisor overview
The Oracle IMDB Cache Advisor enables Oracle Database customers to determine
whether the performance of an existing Oracle Database application can be improved
if the application is used with Oracle IMDB Cache, also referred to as a TimesTen
database.

Cache Advisor generates recommendations of TimesTen cache group definitions
based on the SQL usage in the Oracle Database application. It does this by evaluating
either a captured SQL workload from the application or an existing SQL tuning set.
Cache Advisor analyzes this information along with the schema definitions of the
Oracle Database objects to determine table and column usage patterns. Cache Advisor
also analyzes application performance for specified Oracle IMDB cache sizes, so the
cache group recommendations may differ depending on the size of the specified cache.
For information on SQL tuning sets, see "Automatic SQL Tuning" in the Oracle
Database Performance Tuning Guide.

When evaluating the application workload or SQL tuning set, Cache Advisor
recommends either using asynchronous writethrough (AWT) cache groups or
read-only cache groups in the TimesTen application. It determines the type of cache
groups to use based on the number of SQL statement executions in the Oracle
Database application that change data values relative to the number of SQL SELECT
statement executions.

Cache Advisor overview

9-2 Oracle In-Memory Database Cache User's Guide

After analyzing the application workload or SQL tuning set, and comparing its
performance between Oracle Database and Oracle IMDB Cache, Cache Advisor
generates an HTML report that contains performance statistics comparing Oracle
Database and Oracle IMDB Cache, definitions of the recommended cache tables in the
TimesTen cache group that the application accesses, and the SQL statements that
reference the cache tables. The report also shows which statements from the workload
or SQL tuning set can be executed in Oracle IMDB Cache with no changes, and which
statements require modification before they can be executed. See Chapter 13,
"Compatibility Between TimesTen and Oracle" for information about differences that
may be encountered.

Cache Advisor also generates a ttIsql script that can be used to implement the
recommended cache group definitions. The user-editable script contains SQL
statements such as CREATE CACHE GROUP, LOAD CACHE GROUP, CREATE INDEX,
CREATE SYNONYM, and CREATE VIEW.

Cache Advisor requires the use of three databases:

■ A target Oracle database on which the user application runs and where the
application schema resides. This is where the SQL workload is captured. The
workload executing on this database should be as close to the production database
workload as possible. In addition, the Cache Advisor relies on statistics in the
Oracle target database to calculate the table sizing in TimesTen. Users should
ensure statistics in the target Oracle database are collected and are up to date.

■ A repository Oracle database where Cache Advisor performs analysis of the
workload of SQL statements that are executed on the target Oracle database.

■ A TimesTen database, also referred to as an Oracle IMDB cache, where Cache
Advisor defines and evaluates the recommended cache groups whose cache tables
correspond to the tables in the target Oracle database that the application
workload accesses

Note: Cache Advisor evaluates DML statements (SELECT, INSERT,
UPDATE and DELETE) for execution porting issues, but evaluates only
SELECT statements on both TimesTen and Oracle for the performance
comparison.

Cache Advisor evaluates each SQL statement in isolation from any
other statement and performs a ROLLBACK after each statement
completes. If Cache Advisor were to commit all DML changes, then
the data would change, which would alter the behavior of any
subsequent Cache Advisor evaluations. For example, if Cache Advisor
evaluates and commits a DELETE statement on Oracle, then when the
Cache Advisor performs the evaluation again, there would be no rows
to delete.

Setting up the Oracle and TimesTen host systems

Using the Cache Advisor 9-3

Figure 9–1 Demonstration of the three databases used by the Cache Advisor

Setting up the Oracle and TimesTen host systems
Before you can use Cache Advisor, you must first install TimesTen and then configure
the Oracle and TimesTen systems.

The following sections provide an example to show how to configure each database
and host in order to execute the Cache Advisor. This example uses one of the Quick
Start sample programs as a demonstration for the application that executes the SQL
workload.

To set up the Oracle and TimesTen hosts and databases, complete the following tasks:

1. Configure the target Oracle database and host system

2. Configure the repository Oracle database and host system

3. Configure the TimesTen database and host system

See "Cache Advisor configuration options and usage guidelines" on page 9-10 for
details on the configuration options and usage guidelines when installing and
configuring each host and database included in the Cache Advisor environment.

Configure the target Oracle database and host system
The target Oracle database is where the application schema is defined. This is the
database that the user application will be accessing. Cache Advisor requires that the
version of the target database be Oracle Database Enterprise Edition 10g Release 2
(10.2.0.4) or later.

Log onto the system where the target database resides and create a directory where
Cache Advisor can export workload and schema information to dump files using Data
Pump. This directory can be created by any operating system user on the target
system. The directory must be created on a device that is local to the target system and
not network mounted.

Note: See the Oracle TimesTen In-Memory Database Installation Guide
for information about installing TimesTen.

Setting up the Oracle and TimesTen host systems

9-4 Oracle In-Memory Database Cache User's Guide

The owner of the directory is referred to as the target Cache Advisor user. In the
following example, the target Cache Advisor user is tgtusr and the directory is
/local/tgtusr/targetdir.

% mkdir /local/tgtusr/targetdir

Determine the file system that the directory resides on. On Linux systems, this
information can be obtained by running the df operating system command. In this
example, the file system that the /local/tgtusr/targetdir directory resides on is
/dev/sda1.

Cache Advisor must be able to access the contents of the dump files from the
repository system to perform its analysis. However, the permissions placed on those
files by Data Pump prevent them from being accessed through NFS or transferred to
the repository system using ftp. To access the dump files from the repository system,
set an access control list (ACL) on the directory where the files will reside on the target
system.

As the operating system root user, enable the setting of ACLs on the file system.

mount -o remount,acl /dev/sda1

Change the permissions on the directory so that only the target Cache Advisor user
can read from and write to it. Then set ACLs on the directory and any files created in
the directory to read, write, and execute for the target Cache Advisor user and the
operating system user that is running the Oracle Database server on the target system
(typically the oracle user). On Linux systems, ACLs can be set by running the
operating system setfacl command.

% chmod 700 /local/tgtusr/targetdir
% setfacl -m u:tgtusr:rwx /local/tgtusr/targetdir
% setfacl -m d:u:tgtusr:rwx /local/tgtusr/targetdir
% setfacl -m u:oracle:rwx /local/tgtusr/targetdir
% setfacl -m d:u:oracle:rwx /local/tgtusr/targetdir

Next, set up the target database for use by Oracle IMDB Cache. Start SQL*Plus from an
operating system shell on the TimesTen database system and connect to the target
database as the Oracle sys user. In this example, the net service name of the target
database is targetdb.

% cd TimesTen_install_dir/oraclescripts
% sqlplus sys@targetdb as sysdba
Enter password: password

Use SQL*Plus to create a default tablespace that will be used by both the Oracle
timesten user and the cache administration user. This tablespace must only be used
to store objects for Oracle IMDB Cache and should not be shared with other
applications. In this example, the name of the default tablespace is cachetblsp. For
more information about the timesten user, see "Create users in the Oracle database"
on page 2-1.

Run the SQL*Plus script
TimesTen_install_dir/oraclescripts/initCacheGlobalSchema.sql to
create the timesten user and its metadata tables, and the TT_CACHE_ADMIN_ROLE
role that defines privileges to be granted to this user. Pass the default tablespace as an
argument to the initCacheGlobalSchema.sql script.

SQL> CREATE TABLESPACE cachetblsp DATAFILE 'datfttuser.dbf' SIZE 100M;
SQL> @initCacheGlobalSchema "cachetblsp"

Next, use SQL*Plus to create a target Oracle user, if this user does not already exist.

Setting up the Oracle and TimesTen host systems

Using the Cache Advisor 9-5

The target Oracle user owns the Oracle objects that will be accessed by the SQL
workload application and are candidates for caching in a TimesTen database. The
target Oracle user is the same as the schema user that is described in "Create users in
the Oracle database" on page 2-1.

Grant this user at least the minimum set of privileges required to create tables in the
Oracle database to be cached in a TimesTen database. In this example, the target
Oracle user is oratt.

SQL> CREATE USER oratt IDENTIFIED BY oracle;
SQL> GRANT CREATE SESSION, RESOURCE TO oratt;

Then use SQL*Plus to create a cache administration user. Run the SQL*Plus script
TimesTen_install_dir/oraclescripts/grantCacheAdminPrivileges.sql
to grant the cache administration user the minimum set of privileges required to
process cache group operations. For information on cache groups, see "Cache groups
and cache tables" on page 4-1.

Pass the cache administration user name as an argument to the
grantCacheAdminPrivileges.sql script. In this example, the cache
administration user is cacheuser and the name of its default tablespace is
cachetblsp. For more information about the cache administration user, see "Create
users in the Oracle database" on page 2-1.

SQL> CREATE USER cacheuser IDENTIFIED BY oracache
 2 DEFAULT TABLESPACE cachetblsp QUOTA UNLIMITED ON cachetblsp;
SQL> GRANT SELECT ANY TABLE, DELETE ANY TABLE
 2 INSERT ANY TABLE, UPDATE ANY TABLE TO cacheuser;
SQL> @grantCacheAdminPrivileges "cacheuser"

Run the SQL*Plus script
TimesTen_install_dir/oraclescripts/ttca_sysdbaSetupTarget.sql to
perform the following operations:

■ Create the TTCA_TARGET_ROLE role that defines privileges to be granted to the
target Oracle user.

■ Create or specify an Oracle directory object used for file operations into and out of
the target database. The ttca_sysdbaSetupTarget.sql script associates the
directory object with the local directory that the target Cache Advisor user created
earlier. See "CREATE DIRECTORY" in the Oracle Database SQL Language Reference
for information about Oracle directory objects.

After running the ttca_sysdbaSetupTarget.sql script, exit the SQL*Plus session.

SQL> @ttca_sysdbaSetupTarget
...
Please enter a target Oracle database user name to access the target database:
 oratt
...

Note: Since this example is using the Quick Start sample program,
the example creates oratt as the schema owner.

Note: The target Oracle user and the cache administration user must
be different users. In addition, when you create the repository Cache
Advisor user, this user also must be a different user.

Setting up the Oracle and TimesTen host systems

9-6 Oracle In-Memory Database Cache User's Guide

Press ENTER for a list of existing directory objects on the target database
<Enter>
<existing directory objects on the target database are shown>
Please press ENTER to continue <Enter>

**
*** Please do one of the following:
*** 1. Enter an existing directory object on the target Oracle database
*** using a directory object name listed above that is not defined
*** on a network-mounted path
*** 2. Enter a new directory object name to be created
**
? target_dir

**
*** Creating new directory object TARGET_DIR.
*** Enter the directory path on the target system to use in the definition
*** of TARGET_DIR
**
? /local/tgtusr/targetdir
...
SQL> exit

Configure the repository Oracle database and host system
The repository Oracle database is where Cache Advisor performs analysis of the SQL
workload that is being run on the target Oracle database. Cache Advisor also does
report and script generation in the repository database, as well as store tasks. A task is
an object that contains information about the workload, performance results, and
Cache Advisor options specified by the user. The repository database is a scratch
database to be used only by Cache Advisor and should not be shared with other
applications.

To use Cache Advisor, you must first install and configure a repository database of
Oracle Database Enterprise Edition 11g Release 2 (11.2.0.2) or later. The version of the
repository database must also be the same or later than the version of the target Oracle
database.

Log onto the system where the repository database resides and create a directory
where Cache Advisor will import workload and schema information from dump files
using Data Pump. This directory can be created by any operating system user on the
repository system. The owner of this directory will be referred to as the repository
Cache Advisor user. In this example, the repository Cache Advisor user is reposusr.

The directory must be created on a device that is local to the repository system and not
network mounted. In this example, the directory is
/local/reposusr/repositorydir.

% mkdir /local/reposusr/repositorydir

Determine the file system that the directory resides on. On Linux systems, this
information can be obtained by running the df operating system command. In this
example, the file system that the /local/reposusr/repositorydir directory
resides on is /dev/sfa1.

Cache Advisor must be able to access the contents of the dump files from the
repository system. However, the permissions placed on those files by Data Pump
prevent them from being accessed through NFS or transferred to the repository system
using ftp. To access the dump files from the repository system, set an access control
list (ACL) on the directory where the files will reside on the repository system.

Setting up the Oracle and TimesTen host systems

Using the Cache Advisor 9-7

As the operating system root user, enable the setting of ACLs on the file system, if is
not already enabled.

mount -o remount,acl /dev/sfa1

Change the permissions on the directory so that only the repository Cache Advisor
user can read from and write to it. Then set ACLs on the directory and any files
created in the directory to read, write and execute for the repository Cache Advisor
user and the operating system user that is running the Oracle Database server on the
repository system (typically the oracle user). On Linux systems, ACLs can be set by
running the operating system setfacl command.

% chmod 700 /local/reposusr/repositorydir
% setfacl -m u:reposusr:rwx /local/reposusr/repositorydir
% setfacl -m d:u:reposusr:rwx /local/reposusr/repositorydir
% setfacl -m u:oracle:rwx /local/reposusr/repositorydir
% setfacl -m d:u:oracle:rwx /local/reposusr/repositorydir

Start SQL*Plus from an operating system shell on the TimesTen database system and
connect to the repository database as the Oracle sys user. In this example, the net
service name of the repository database is repositorydb.

% cd TimesTen_install_dir/oraclescripts
% sqlplus sys@repositorydb as sysdba
Enter password: password

Run the SQL*Plus script TimesTen_install_dir/oraclescripts/
ttca_sysdbaSetupRepository.sql to perform the following operations:

■ Create a user that owns the objects in the repository database used to analyze the
SQL workload run on the target Oracle database, and create the ttca_ts
tablespace used to store these objects.

■ Create or specify an Oracle directory object used for file operations into and out of
the repository database. The ttca_sysdbaSetupRepository.sql script
associates the directory object with the local directory that the repository Cache
Advisor user created earlier. See "CREATE DIRECTORY" in Oracle Database SQL
Language Reference for information about Oracle directory objects.

After running the ttca_sysdbaSetupRepository.sql script, exit the SQL*Plus
session.

SQL> @ttca_sysdbaSetupRepository
...
Press ENTER to create the repository Oracle database user with user name
 TTCACHEADVISOR, or enter an alternative user name for the repository database
 user: <Enter>
Please enter a password for the TTCACHEADVISOR user: ttca
Please confirm the password for the TTCACHEADVISOR user: ttca
...
Press ENTER for a list of existing directory objects on the repository database
<Enter>
<existing directory objects on the repository database are shown>
Please press ENTER to continue <Enter>

**
*** Please do one of the following:
*** 1. Enter an existing directory object on the repository Oracle database
*** using a directory object name listed above that is not defined on a
*** network-mounted path
*** 2. Enter a new directory object name to be created

Setting up the Oracle and TimesTen host systems

9-8 Oracle In-Memory Database Cache User's Guide

**
? repository_dir

**
*** Creating new directory object REPOSITORY_DIR.
*** Enter the directory path on the repository system to use in the definition
*** of REPOSITORY_DIR
**
? /local/reposusr/repositorydir
...
SQL> exit

Configure the TimesTen database and host system
The TimesTen database is where Cache Advisor defines and evaluates the
recommended cache groups whose cache tables correspond to the tables in the target
Oracle database. The TimesTen database is a test database to be used only by Cache
Advisor and should not be shared with other applications.

In this example, NFS is the network connection that will be used to transfer files, such
as the Data Pump dump files that contain workload and schema information, between
the target Oracle database system, repository Oracle database system, and TimesTen
database system. On the target system, export the directory that was created by the
target Cache Advisor user to NFS clients. Similarly on the repository Oracle system,
export the directory that was created by the repository Cache Advisor user to NFS
clients. On Linux systems, add an entry to the /etc/exports file for each directory
to be exported to NFS clients. This file must be updated on both the target system and
the repository system. Then run the exportfs -a operating system command as root
on both systems for updates to the files to take effect.

As the TimesTen instance administrator user, log onto the system where the TimesTen
database will reside and create two directories.

% mkdir /home/ttuser/targetdir
% mkdir /home/ttuser/repositorydir

As the operating system root user, network mount the first directory to the directory
on the target system that was created by the target Cache Advisor user. Then, network
mount the second directory to the directory on the repository system that was created
by the repository Cache Advisor user.

mount -t nfs targethost:/local/tgtusr/targetdir /home/ttuser/targetdir
mount -t nfs reposhost:/local/reposusr/repositorydir
 /home/ttuser/repositorydir

In the following data source name (DSN) example, the Net service name of the target
Oracle database is targetdb and its database character set is AL32UTF8. The
TimesTen database character set must match the database character set of the target
Oracle database. You can determine the database character set of an Oracle database
by executing the following query in SQL*Plus as any user:

SQL> SELECT value FROM nls_database_parameters
 WHERE parameter='NLS_CHARACTERSET';

In the .odbc.ini file that resides in your home directory or the
TimesTen_install_dir/info/sys.odbc.ini file, create a TimesTen DSN
cacheadv and set the following connection attributes:

Setting up the Oracle and TimesTen host systems

Using the Cache Advisor 9-9

[cacheadv]
DataStore=/users/OracleCache/cacheadv
PermSize=64
OracleNetServiceName=targetdb
DatabaseCharacterSet=AL32UTF8
CacheGridEnable=0

Set up the TimesTen database for use by Oracle IMDB Cache. Start the ttIsql utility
on the TimesTen system from an operating system shell and connect to the cacheadv
DSN as the TimesTen instance administrator user to create the TimesTen database that
will be used to cache data from the target Oracle database.

% ttIsql cacheadv

Use ttIsql to create a cache manager user. Grant this user at least the minimum set
of privileges required to create and perform operations on cache groups. In the
following example, the cache manager user name is cacheuser, which is the same
name as the Oracle cache administration user that was created in the target Oracle
database.

Command> CREATE USER cacheuser IDENTIFIED BY ttcache;
Command> GRANT CREATE SESSION, CACHE_MANAGER, CREATE ANY TABLE TO cacheuser;

Next, use ttIsql to call the ttCacheUidPwdSet built-in procedure to set the Oracle
cache administration user name and password. Then exit the ttIsql session.

Command> call ttCacheUidPwdSet('cacheuser','oracache');
Command> exit

The cache administration user name and password need to be set only once in a
TimesTen database. See "Set the cache administration user name and password" on
page 3-14 for information about how this setting is used in the TimesTen database.

Note: In this example, Cache Advisor sets the CacheGridEnable
attribute to 0, so that the user is not required to create a grid. For more
details, see "CacheGridEnable" in the Oracle TimesTen In-Memory
Database Reference.

Note:

See "Define a DSN for the TimesTen database" on page 3-11 for more
information about defining a DSN for a TimesTen database that is
used to cache data from an Oracle database.

See "Managing TimesTen Databases" in the Oracle TimesTen In-Memory
Database Operations Guide for more information about TimesTen DSNs.

Note:

For more information about the cache manager user, see "Create users
in the TimesTen database" on page 2-3.

See "Managing Access Control" in Oracle TimesTen In-Memory Database
Operations Guide for more information about TimesTen users and
privileges.

Setting up the Oracle and TimesTen host systems

9-10 Oracle In-Memory Database Cache User's Guide

Cache Advisor configuration options and usage guidelines
The following sections describe supported configuration options and guidelines for
using Oracle In-Memory Database (IMDB) Cache Advisor:

■ Supported configuration options for hosts and databases

■ Restrictions and assumptions

Supported configuration options for hosts and databases
Cache Advisor supports the following configuration options for hosts and databases
included in the Cache Advisor environment:

■ The target Oracle database, which must be Oracle Database Enterprise Edition 10g
Release 2 (10.2.0.4) or later, the repository Oracle database, which must be Oracle
Database Enterprise Edition 11g Release 2 (11.2.0.2) or later, and the TimesTen
database all reside on separate host systems. The target Oracle database cannot be
a later version than the repository Oracle database. This configuration is preferred,
because Cache Advisor operations (such as workload analysis and report
generation) have minimal impact on the target database, which can be a
production database. It accurately evaluates performance for both the target
database and the TimesTen database.

■ The repository Oracle database, which must be Oracle Database Enterprise Edition
11g Release 2 (11.2.0.2) or later, and the TimesTen database reside on the same host
system. The target Oracle database, which must be Oracle Database Enterprise
Edition 10g Release 2 (10.2.0.4) or later, resides on a separate host system. The
target Oracle database cannot be a later version than the repository Oracle
database. This configuration accurately evaluates performance for the target
database and can accurate evaluate performance for the TimesTen database.

■ A single Oracle database, which must be Oracle Database Enterprise Edition 11g
Release 2 (11.2.0.2) or later, serves as both the target and repository database. The
TimesTen database resides on a separate host system. This configuration is
convenient, but does not accurately evaluate performance for the target database.
It accurately evaluates performance for the TimesTen database. The target Oracle
database should be a test database and not a production database.

■ The target Oracle database, which must be Oracle Database Enterprise Edition 10g
Release 2 (10.2.0.4) or later, the repository Oracle database, which must be Oracle
Database Enterprise Edition 11g Release 2 (11.2.0.2) or later, where both reside on
the same host system. The target Oracle database cannot be a later version than the
repository Oracle database. This configuration can be used to demonstrate Cache
Advisor on a laptop computer and identify porting issues, but does not accurately
evaluate performance for the target database nor the TimesTen database. The
target Oracle database should be a test database and not a production database.

Restrictions and assumptions
The design of the cache schema recommended by Cache Advisor assumes that the
user application will establish a connection to the TimesTen database and a separate
connection to the target Oracle database.

Cache Advisor supports most TimesTen DSN attribute settings. However, Cache
Advisor does not support the following attribute settings:

■ Temporary=1 (temporary or non-persistent TimesTen database)

■ TypeMode=1 (TimesTen data type mode)

■ DDLCommitBehavior=1 (do not automatically commit DDL statements)

Running the Cache Advisor

Using the Cache Advisor 9-11

■ DuplicateBindMode=1 (consider dynamic parameters with the same name as
identical)

■ PLSQL=0 (disable the use of TimesTen PL/SQL)

■ DynamicLoadEnable=0 (disable dynamic loading of data from Oracle tables into
TimesTen cache tables)

Running a SQL workload application
This example uses the OCI version of the throughput benchmark (tptbmOCI) to
generate a SQL workload on the target Oracle database.

Build and run the demo program as any operating system user on the TimesTen
system. The net service name of the target database is targetdb. The target Oracle
user is oratt. The password of the oratt user is oracle. The application table will
be populated with 252 = 625 rows and the maximum number of SQL statements per
transaction is 1000.

% cd TimesTen_install_dir/quickstart/sample_code/oci
% make tptbmOCI
% tptbmOCI -service targetdb -user oratt -key 25 -max 1000
Enter password for oratt : password
...
Load the oratt.vpn_users table with 625 rows of data
Run 10000 txns with 1 process: 80% read, 20% update, 0% insert, 0% delete

Running the Cache Advisor
While the tptbmOCI workload application is running on the target Oracle database, in
a separate window run the ttCacheAdvisor utility on the TimesTen system from an
operating system shell as the instance administrator user. Specify the target Oracle
database, repository Oracle database, and TimesTen database involved in the
evaluation.

% ttCacheAdvisor -oraTarget -oraConn "oratt@targetdb" \
-oraDirObject target_dir -oraDirNfs /home/ttuser/targetdir \
-oraRepository -oraConn "ttcacheadvisor@repositorydb" \
-oraDirObject repository_dir -oraDirNfs /home/ttuser/repositorydir \
-ttConn "DSN=cacheadv;UID=cacheuser" \
-report /home/ttuser/CAreport -task sampletask -captureCursorCache 10
-evalSqlPerf

Enter password for Oracle user oratt@targetdb: password
31.16:21:03 Info: beginning Oracle batch operation checkAuthorization on
oratt@targetdb
31.16:21:03 Info: Oracle batch operation checkAuthorization completed
Enter password for Oracle user ttcacheadvisor@repositorydb: password
31.16:21:05 Info: beginning Oracle batch operation checkAuthorization on
ttcacheadvisor@repositorydb
31.16:21:06 Info: Oracle batch operation checkAuthorization completed
31.16:21:06 Info: beginning Oracle batch operation checkOraUser on
oratt@targetdb
31.16:21:06 Info: Oracle batch operation checkOraUser completed
31.16:21:06 Info: beginning TimesTen batch operation checkUserExists on
"dsn=cacheadv;uid=cacheuser"
31.16:21:07 Info: TimesTen batch operation checkUserExists completed

Enter password for TimesTen user cacheuser (dsn=cacheadv): password
31.16:21:10 Info: beginning TimesTen batch operation checkTTuserAuthorization

Running the Cache Advisor

9-12 Oracle In-Memory Database Cache User's Guide

on "dsn=cacheadv;uid=cacheuser"
31.16:21:11 Info: TimesTen batch operation checkTTuserAuthorization completed
Enter password for Oracle user cacheuser@targetdb: password
31.16:21:14 Info: beginning Oracle batch operation checkTToraclepwdAttribute
on cacheuser@targetdb
31.16:21:14 Info: Oracle batch operation checkTToraclepwdAttribute completed
31.16:21:14 Info: beginning Oracle batch operation verifyTargetConfig on
oratt@targetdb
31.16:21:25 Info: Oracle batch operation verifyTargetConfig completed
...

The previous example used the ttCacheAdvisor utility options as follows:

■ The -oraTarget option identifies the target Oracle database. The options
following this option specifies the following for the target Oracle database:

– The -oraConn option specifies the target Oracle user and the Net service
name of the target database in the connection string.

– The -oraDirObject option specifies the Oracle directory object that
corresponds to the directory where Cache Advisor will export workload and
schema information to dump files.

– The -oraDirNfs option specifies the directory on the TimesTen system that
is network mounted to the directory on the target system where Cache
Advisor will export workload and schema information to dump files.

■ The -oraRepository option identifies the repository Oracle database. The
options following this option specifies the following for the repository Oracle
database:

– The -oraConn option specifies the user that owns the objects in the repository
database used to analyze the SQL workload run on the target Oracle database
and the net service name of the repository database in the connection string.

– The -oraDirObject option specifies the Oracle directory object that
corresponds to the directory where Cache Advisor will import workload and
schema information from dump files.

– The -oraDirNfs option specifies the directory on the TimesTen system that
is network mounted to the directory on the repository system where Cache
Advisor will import workload and schema information from dump files.

■ The -ttConn option identifies the TimesTen database. Specify the DSN and the
cache manager user in the connection string.

■ The -report option overrides the default directory location where the report files
reside.

■ The -task option overrides the default task name.

■ The -captureCursorCache option specifies that the ttCacheAdvisor utility
analyze the SQL workload running on the target database for 10 minutes.

■ The -evalSqlPerf option is specified to generate a performance comparison
between the workload run on the target Oracle database and on the TimesTen
database.

If the passwords are not specified in the connection strings for each database, the
ttCacheAdvisor utility will prompt for the passwords of each user connecting to
the TimesTen and Oracle databases used in the Cache Advisor evaluation.

For this example, the following user passwords are requested:

Viewing the Cache Advisor reports

Using the Cache Advisor 9-13

■ The password for the target Oracle database user. In this example, the password of
oratt@targetdb is oracle.

■ The password for the user that owns the objects in the repository Oracle database
used to analyze the SQL workload run on the target Oracle database. In this
example, the password of ttcacheadvisor@repositorydb is ttca.

■ The password for the TimesTen cache manager user. In this example, the
password of cacheuser is ttcache.

■ The password of the Oracle cache administration user. In this example, the
password of cacheuser@targetdb is oracache. This password is requested
because the -evalSqlPerf option is specified to generate a performance
comparison between the workload run on the target Oracle database and on the
TimesTen database.

The ttCacheAdvisor utility generates periodic status messages as it analyzes the
application workload running on the target database.

When ttCacheAdvisor completes, it creates an HTML report showing performance
statistics as well as information such as which SQL statements from the workload can
and cannot be executed in TimesTen. By default, the files that constitute the report
reside in the task-name directory where the utility was invoked. In this example, the
directory is specified with the -report option. To view the report, open the
index.htm file in the report files directory from a web browser. The task name, by
default, is user-name_host-name_timestamp. In this example, the task name is overridden
with the -task option.

The ttCacheAdvisor utility also generates an implementation script file named
ttCacheAdvisor_task-name_timestamp.sql in the directory where the utility was
invoked. This script can be run with the ttIsql utility to create objects in the
TimesTen database used to implement the caching of the Oracle objects that were
accessed by the application.

% ttIsql -f ttCacheAdvisor_sampletask_20120531164101.sql
 "DSN=cacheadv;UID=cacheuser;OraclePWD=oracache"

For more information about the report and implementation script, see "Viewing the
Cache Advisor reports" on page 9-13.

For information about the syntax for ttCacheAdvisor, see "ttCacheAdvisor" in the
Oracle TimesTen In-Memory Database Reference.

Viewing the Cache Advisor reports
This section provides examples of the report pages generated by the Cache Advisor.
The report can be viewed using the following Web browsers:

■ Firefox 3.6 or later

■ Chrome 7 or later

■ Safari 4 or later

To view the report, open the index.htm file in the report files directory from a Web
browser.

If the -evalSqlPerf option was specified when the ttCacheAdvisor utility was
executed, the report shows the average response time for the SQL SELECT statements
that were executed in the target Oracle database. It also shows the average response
time for these statements when executed in the TimesTen database with the
user-specified cache size. The complete IMDB cache size is the minimum TimesTen

Viewing the Cache Advisor reports

9-14 Oracle In-Memory Database Cache User's Guide

database size required to cache all of the objects that were accessed by the SQL
workload and can be supported by TimesTen.

Figure 9–2 Cache Advisor report home page

Figure 9–3 Cache Advisor findings and recommendations

You can view the SQL statements that were executed in the workload by clicking the
link under the SQL Statements column on the home page that indicates the number of
statements in the workload. In this case, click the link of the first 2 where it says
"2 of 2".

Viewing the Cache Advisor reports

Using the Cache Advisor 9-15

Figure 9–4 Viewing the number of SQL statements executed in the workload

You can click an individual SQL statement to see the response time and other statistics
for that statement. In this example, when you click the link of the second statement,
you will see the following information about the SELECT statement:

Figure 9–5 Information for a specific SQL statement executed during Cache Advisor evaluation

You can click the name of the cache group to see the definition of the cache group and
its cache tables, as well as the SQL statements that referenced the cache group. In this
example, the following report page appears when you click the CG1_USERSPECCACHE
link:

Viewing the Cache Advisor reports

9-16 Oracle In-Memory Database Cache User's Guide

Figure 9–6 Cache group details

Viewing the Cache Advisor reports

Using the Cache Advisor 9-17

Figure 9–7 SQL statements used for cache group

From the home page, you can access the text of the implementation script by clicking
the "Configure an IMDB Cache for your application" link. Then, from the next page,
click the "Implementation Script" link.

The following shows an example of an implementation script:

Figure 9–8 Implementation script example

Note: For more details on the implementation script, see "Running
the Cache Advisor" on page 9-11.

Viewing the Cache Advisor reports

9-18 Oracle In-Memory Database Cache User's Guide

Figure 9–9 Continuation of implementation script example

The name of the script is ttCacheAdvisor_task-name_timestamp.sql and it resides
in the directory where the ttCacheAdvisor utility was invoked. This script can be
run with the ttIsql utility to create objects in the TimesTen database used to
implement the caching of the Oracle objects that were accessed by the application.

% ttIsql -f ttCacheAdvisor_sampletask_20120531164101.sql
 "DSN=cacheadv;UID=cacheuser;OraclePWD=oracache"

You can obtain database and system information about the target Oracle database
(Workload Collection), repository Oracle database and TimesTen database (Client) by
clicking the "Click here for information about the configuration that was used to
generate this report" link from the home page.

Viewing the Cache Advisor reports

Using the Cache Advisor 9-19

Figure 9–10 Configuration overview page

Figure 9–11 Repository and client configuration information

Cleaning up the Oracle and TimesTen databases and host systems

9-20 Oracle In-Memory Database Cache User's Guide

Cleaning up the Oracle and TimesTen databases and host systems
Complete the following tasks to restore the Oracle and TimesTen systems to their
original state after you have finished evaluating the application workload that was run
on the target Oracle database:

1. Clean up the target Oracle database and host system

2. Clean up the repository Oracle database and host system

3. Clean up the TimesTen database and host system

Clean up the target Oracle database and host system
Start SQL*Plus from an operating system shell on the TimesTen database system and
connect to the target Oracle database as the sys user. Then, use SQL*Plus as follows to
clean up the target Oracle database and its host system:

1. Drop the timesten user, the oratt target Oracle user (if you created this user
because it did not exist prior to configuring the target database), and the
cacheuser cache administration user.

% sqlplus sys@targetdb as sysdba
Enter password: password
SQL> DROP USER timesten CASCADE;
SQL> DROP USER oratt CASCADE;
SQL> DROP USER cacheuser CASCADE;

2. Drop the TT_CACHE_ADMIN_ROLE role, the TTCA_TARGET_ROLE role, and the
target_dir directory object.

SQL> DROP ROLE TT_CACHE_ADMIN_ROLE;
SQL> DROP ROLE TTCA_TARGET_ROLE;
SQL> DROP DIRECTORY target_dir;
SQL> exit

3. Drop the cachetblsp default tablespace used by the timesten user and cache
administration user, including the contents of the tablespace and its data file. Exit
the SQL*Plus session.

SQL> DROP TABLESPACE cachetblsp INCLUDING CONTENTS AND DATAFILES;
SQL> exit

Note: Specifying CASCADE in a DROP USER statement drops all
objects, such as tables owned by the user, before dropping the user
itself.

Note: The above steps do not drop the schemas that were created for
the workload by the Cache Advisor. You can keep the schemas for use
by another application workload, if they use the same schemas, or if
you want to re-execute the same workload after re-creating the user
and tablespace. If not, you can either manually drop the schemas
created or, if the target database is a test database, destroy the
database.

Cleaning up the Oracle and TimesTen databases and host systems

Using the Cache Advisor 9-21

Clean up the repository Oracle database and host system
Start SQL*Plus from an operating system shell on the TimesTen database system and
connect to the repository Oracle database as the sys user. Use SQL*Plus as follows to
clean up the repository Oracle database and its host system:

1. Drop the ttcacheadvisor user that owns the objects in the repository database
used to analyze the SQL workload run on the target Oracle database.

% sqlplus sys@repositorydb as sysdba
Enter password: password
SQL> DROP USER ttcacheadvisor CASCADE;

2. Drop the sys.wri$_adv_sqla_tt_tabcols table and the
repository_dir directory object.

SQL> DROP TABLE sys.wri$_adv_sqla_tt_tabcols;
SQL> DROP DIRECTORY repository_dir;

3. Drop the ttca_ts tablespace used by the ttCacheAdvisor user, including the
contents of the tablespace and its data file. Exit the SQL*Plus session.

SQL> DROP TABLESPACE ttca_ts INCLUDING CONTENTS AND DATAFILES;
SQL> exit

Clean up the TimesTen database and host system
Start the ttIsql utility and connect to the cacheadv DSN as the TimesTen instance
administrator user. Perform the following to clean up the TimesTen database:

1. Use ttIsql to grant the DROP ANY TABLE privilege to the cache manager user
so that this user can drop the underlying cache tables when dropping the cache
groups. Then, exit this ttIsql session.

% ttIsql cacheadv
Command> GRANT DROP ANY TABLE TO cacheuser;
Command> exit

2. Start the ttIsql utility and connect to the cacheadv DSN as the cache manager
user. The password of the TimesTen cache manager user cacheuser is ttcache.
Use ttIsql to call the ttRepStop built-in procedure to stop the replication
agent on the TimesTen database. Drop the cg1_userspeccache AWT cache
group. Call the ttCacheStop built-in procedure to stop the cache agent on the
TimesTen database. Exit this ttIsql session.

% ttIsql "DSN=cacheadv;UID=cacheuser;OraclePWD=oracache"
Enter password for 'cacheuser': password
Command> call ttRepStop;
Command> DROP CACHE GROUP cg1_userspeccache;
Command> call ttCacheStop;
Command> exit

3. Use the ttDestroy utility to connect to the cacheadv DSN and destroy the
TimesTen database.

% ttDestroy cacheadv

Cleaning up the Oracle and TimesTen databases and host systems

9-22 Oracle In-Memory Database Cache User's Guide

10

Using Oracle In-Memory Database Cache in an Oracle RAC Environment 10-1

10Using Oracle In-Memory Database Cache in
an Oracle RAC Environment

This chapter describes how to use Oracle In-Memory Database Cache (IMDB Cache) in
an Oracle Real Application Clusters (Oracle RAC) environment. It includes the
following topics:

■ How IMDB Cache works in an Oracle RAC environment

■ Restrictions on using IMDB Cache in an Oracle RAC environment

■ Setting up IMDB Cache in an Oracle RAC environment

How IMDB Cache works in an Oracle RAC environment
Oracle RAC enables multiple Oracle instances to access one Oracle database with
shared resources, including all data files, control files, PFILEs and redo log files that
reside on cluster-aware shared disks. Oracle RAC handles read/write consistency and
load balancing while providing high availability.

Fast Application Notification (FAN) is an Oracle RAC feature that was integrated with
Oracle Call Interface (OCI) in Oracle Database 10g Release 2. FAN publishes
information about changes in the cluster to applications that subscribe to FAN events.
FAN prevents unnecessary operations such as the following:

■ Attempts to connect when services are down

■ Attempts to finish processing a transaction when the server is down

■ Waiting for TCP/IP timeouts

See Oracle Real Application Clusters Administration and Deployment Guide for more
information about Oracle RAC and FAN.

IMDB Cache uses OCI integrated with FAN to receive notification of Oracle events.
With FAN, IMDB Cache detects connection failures within a minute. Without FAN, it
can take several minutes for IMDB Cache to receive notification of an Oracle failure.
Without FAN, IMDB Cache detects a connection failure the next time the connection is
used or when a TCP/IP timeout occurs. IMDB Cache can recover quickly from Oracle
failures without user intervention.

IMDB Cache also uses Transparent Application Failover (TAF), which is a feature of
Oracle Net Services that enables you to specify how you want applications to
reconnect after a failure. See Oracle Database Net Services Administrator's Guide for more
information about TAF. TAF attempts to reconnect to the Oracle database for four
minutes. If this is not successful, the cache agent restarts and attempts to reconnect
with the Oracle database every minute.

How IMDB Cache works in an Oracle RAC environment

10-2 Oracle In-Memory Database Cache User's Guide

OCI applications can use one of the following types of Oracle Net failover
functionality:

■ None: No failover functionality is used. This can also be explicitly specified to
prevent failover from happening. This is the default failover functionality.

■ Session: If an application's connection is lost, a new connection is automatically
created for the application. This type of failover does not attempt to recover
selects.

■ Select: This type of failover enables applications that began fetching rows from a
cursor before failover to continue fetching rows after failover.

The behavior of IMDB Cache depends on the actions of TAF and how TAF is
configured. By default, TAF and FAN callbacks are installed if you are using IMDB
Cache in an Oracle RAC environment. If you do not want TAF and FAN capabilities,
set the RACCallback connection attribute to 0.

Table 10–1 shows the behaviors of IMDB Cache operations in an Oracle RAC
environment with different TAF failover types.

Table 10–1 Behavior of IMDB Cache operations in an Oracle RAC environment

Operation TAF Failover Type
Behavior After a Failed Connection on the
Oracle Database

Autorefresh None The cache agent automatically stops, restarts
and waits until a connection can be established
on the Oracle database. This behavior is the
same as in a non-Oracle RAC environment.

No user intervention is needed.

Autorefresh Session One of the following occurs:

■ All failed connections are recovered.
Autorefresh operations that were in
progress are rolled back and retried.

■ If TAF times out or cannot recover the
connection, the cache agent automatically
stops, restarts and waits until a connection
can be established on the Oracle database.

■ In all cases, no user intervention is needed.

Autorefresh Select One of the following occurs:

■ Autorefresh operations resume from the
point of connection failure.

■ Autorefresh operations that were in
progress are rolled back and retried.

■ If TAF times out or cannot recover the
connection, the cache agent automatically
stops, restarts and waits until a connection
can be established on the Oracle database.

■ In all cases, no user intervention is needed.

AWT None The receiver thread of the replication agent for
the AWT cache group exits. A new thread is
spawned and tries to connect to the Oracle
database.

No user intervention is needed.

How IMDB Cache works in an Oracle RAC environment

Using Oracle In-Memory Database Cache in an Oracle RAC Environment 10-3

AWT Session, Select One of the following occurs:

■ If the connection is recovered and there are
uncommitted DML operations in the
transaction, the transaction is rolled back
and then reissued.

■ If the connection is recovered and there are
no uncommitted DML operations, new
operations can be issued without rolling
back.

In all cases, no user intervention is needed.

SWT, propagate,
flush, and
passthrough

None The application is notified of the connection
loss. The cache agent disconnects from the
Oracle database and the current transaction is
rolled back. All modified session attributes are
lost.

During the next passthrough operation, the
cache agent tries to reconnect to the Oracle
database. This behavior is the same as in a
non-Oracle RAC environment.

No user intervention is needed.

SWT, propagate,
flush and
passthrough

SWT, propagate and
flush

Session

Select

One of the following occurs:

■ The connection to the Oracle database is
recovered. If there were open cursors, DML
or lock operations on the lost connection,
an error is returned and the user must roll
back the transaction before continuing.
Otherwise, the user can continue without
rolling back.

■ If TAF times out or cannot recover the
connection, the application is notified of the
connection loss. The cache agent
disconnects from the Oracle database and
the current transaction is rolled back. All
modified session attributes are lost.

During the next passthrough operation, the
cache agent tries to reconnect to the Oracle
database.

In this case, no user intervention is needed.

Passthrough Select The connection to the Oracle database is
recovered. If there were DML or lock operations
on the lost connection, an error is returned and
the user must roll back the transaction before
continuing. Otherwise, the user can continue
without rolling back.

Load and refresh None The application receives a loss of connection
error.

Load and refresh Session One of the following occurs:

■ The load or refresh operation succeeds.

■ An error is returned stating that a fetch
operation on Oracle cannot be executed.

Table 10–1 (Cont.) Behavior of IMDB Cache operations in an Oracle RAC environment

Operation TAF Failover Type
Behavior After a Failed Connection on the
Oracle Database

Restrictions on using IMDB Cache in an Oracle RAC environment

10-4 Oracle In-Memory Database Cache User's Guide

Restrictions on using IMDB Cache in an Oracle RAC environment
IMDB Cache support of Oracle RAC has the following restrictions:

■ IMDB Cache behavior is limited to Oracle RAC, FAN and TAF capabilities. For
example, if all nodes for a service fail, the service is not restarted. IMDB Cache
waits for the user to restart the service.

■ TAF does not recover ALTER SESSION operations. The user is responsible for
restoring changed session attributes after a failover.

■ IMDB Cache uses OCI integrated with FAN. This interface automatically spawns a
thread to wait for an Oracle event. This is the only IMDB Cache feature that
spawns a thread in a TimesTen direct link application. Adapt your application to
account for this thread creation. If you do not want the extra thread, set the
RACCallback connection attribute to 0 so that TAF and FAN are not used.

Setting up IMDB Cache in an Oracle RAC environment
Install Oracle RAC and IMDB Cache. Ensure that the cache administration user has the
SELECT ANY DICTIONARY privilege.

There are two TimesTen environment variables that control TAF timeouts:

■ TT_ORA_FAILOVER_TIMEOUT: TAF timeout, in minutes, for the application.
Applies to SWT cache groups, user managed cache groups that use the
PROPAGATE cache table attribute, and the use of the passthrough feature. The
default is 5 minutes.

■ TT_AGENT_ORA_FAILOVER_TIMEOUT: TAF timeout, in minutes, for the
replication agent. Applies to AWT cache groups. The default is 5 minutes.

Make sure that the TimesTen daemon and cache agent are started. The following
Oracle components should also be started:

■ Oracle instances

■ Oracle listeners

■ Oracle service that will be used for Oracle In-Memory Database Cache

Then perform the following tasks:

1. Verify that the RACCallback connection attribute is set to 1 (default).

Load and refresh Select One of the following occurs:

■ If the Oracle cursor is open and the cursor
is recovered, or if the Oracle cursor is not
open, then the load or refresh operation
succeeds.

■ An error is returned if TAF was unable to
recover either the session or open Oracle
cursors.

Note: An error is less likely to be returned than
if the TAF failover type is Session.

Table 10–1 (Cont.) Behavior of IMDB Cache operations in an Oracle RAC environment

Operation TAF Failover Type
Behavior After a Failed Connection on the
Oracle Database

Setting up IMDB Cache in an Oracle RAC environment

Using Oracle In-Memory Database Cache in an Oracle RAC Environment 10-5

2. Use the DBMS_SERVICE.MODIFY_SERVICE function or Oracle Enterprise
Manager to enable publishing of FAN events. This changes the value in the AQ_
HA_NOTIFICATIONS column of the Oracle ALL_SERVICES view to YES.

See Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SERVICE Oracle PL/SQL package.

3. Enable TAF on the Oracle service used for IMDB Cache with one of the following
methods:

– Create a service for TimesTen in the Oracle tnsnames.ora file with the
following settings:

– LOAD_BALANCE=ON (optional)

– FAILOVER_MODE=(TYPE=SELECT) or FAILOVER_
MODE=(TYPE=SESSION)

– Use the DBMS_SERVICE.MODIFY_SERVICE function to set the TAF failover
type.

See Oracle Database Net Services Administrator's Guide for more information
about enabling TAF.

4. If you have a TimesTen direct link application, link it with a thread library so that
it will receive FAN notifications. FAN spawns a thread to monitor for failures.

Setting up IMDB Cache in an Oracle RAC environment

10-6 Oracle In-Memory Database Cache User's Guide

11

Using Oracle In-Memory Database Cache with Data Guard 11-1

11Using Oracle In-Memory Database Cache
with Data Guard

This chapter describes how to configure Oracle In-Memory Database Cache (IMDB
Cache) to work with either synchronous local Data Guard or Data Guard used during
planned maintenance. It includes the following topics:

■ Components of MAA for Oracle In-Memory Database Cache

■ How IMDB Cache works with Data Guard

Components of MAA for Oracle In-Memory Database Cache
Oracle Maximum Availability Architecture (MAA) is Oracle's best practices blueprint
based on proven Oracle high availability (HA) technologies and recommendations.
The goal of MAA is to achieve the optimal high availability architecture at the lowest
cost and complexity.

To be compliant with MAA, IMDB Cache must support Oracle Real Application
Clusters (Oracle RAC) and Oracle Data Guard, as well as have its own HA capability.
IMDB Cache provides its own HA capability through active standby pair replication of
cache tables in read-only and AWT cache groups. See "Using Oracle In-Memory
Database Cache in an Oracle RAC Environment" on page 10-1 for more information on
IMDB Cache and Oracle RAC.

Oracle Data Guard provides the management, monitoring, and automation software
infrastructure to create and maintain one or more synchronized standby databases to
protect data from failures, disasters, errors and corruptions. If the primary database
becomes unavailable because of a planned or an unplanned outage, Data Guard can
switch any standby database to the primary role, thus minimizing downtime and
preventing any data loss. For more information about Data Guard, see Oracle Data
Guard Concepts and Administration.

The MAA framework for IMDB Cache supports cache tables in explicitly loaded
read-only and AWT cache groups. For cache tables in dynamic cache groups of any
cache group type, SWT cache groups, and user managed cache groups that use the
AUTOREFRESH cache group attribute, IMDB Cache cannot access the Oracle database
during a failover and switchover because cache applications will have to wait until the
failover and switchover completes.

In general, however, all cache groups types are supported with synchronous local
Data Guard or Data Guard during planned maintenance.

How IMDB Cache works with Data Guard

11-2 Oracle In-Memory Database Cache User's Guide

How IMDB Cache works with Data Guard
IMDB Cache works with synchronous physical standby failover and switchover and
logical standby switchover as long as the object IDs for cached Oracle tables remain
the same on the primary and standby databases. Object IDs can change if the table is
dropped and re-created, altered, or a truncated flashback operation or online segment
shrink is executed.

During a transient upgrade, a physical standby database is transformed into a logical
standby database. For the time that the standby database is logical, the user must
ensure that the object IDs of the cached Oracle tables do not change. Specifically, tables
that are cached should not drop and re-created, truncated, altered, flashed back or
online segment shrunk.

Configuring the Oracle databases
In order for IMDB Cache to fail over and switch over properly, configure the Oracle
primary and standby databases using the following steps:

1. The Data Guard configuration must be managed by the Data Guard Broker so that
IMDB Cache daemon processes and application clients respond faster to failover
and switchover events.

2. If you are configuring an Oracle RAC database, use the Oracle Enterprise Manager
Cluster Managed Database Services Page to create database services that IMDB
Cache and its client applications use to connect to the Oracle primary database.
See "Introduction to Automatic Workload Management" in Oracle Real Application
Clusters Administration and Deployment Guide for information about creating
database services.

3. If you created the database service in step 2, use the MODIFY_SERVICE function of
the DBMS_SERVICE PL/SQL package to modify the service to enable high
availability notification to be sent through Advanced Queuing (AQ) by setting the
aq_ha_notifications attribute to TRUE. To configure server side TAF settings,
set the failover attributes, as shown in the following example:

BEGIN
DBMS_SERVICE.MODIFY_SERVICE
(service_name => 'DBSERV',
 goal => DBMS_SERVICE.GOAL_NONE,
 dtp => false,
 aq_ha_notifications => true,
 failover_method => 'BASIC',
 failover_type => 'SELECT',
 failover_retries => 180,
 failover_delay => 1);
END;

4. If you did not create the database service in step 2, use the CREATE_SERVICE
function of the DBMS_SERVICE PL/SQL package to create the database service,
enable high availability notification, and configure server side TAF settings:

BEGIN
DBMS_SERVICE.CREATE_SERVICE
(service_name => 'DBSERV',
 network_name => 'DBSERV',
 goal => DBMS_SERVICE.GOAL_NONE,
 dtp => false,
 aq_ha_notifications => true,
 failover_method => 'BASIC',

How IMDB Cache works with Data Guard

Using Oracle In-Memory Database Cache with Data Guard 11-3

 failover_type => 'SELECT',
 failover_retries => 180,
 failover_delay => 1);
END;

5. Create two triggers to relocate the database service to a Data Guard standby
database (Oracle RAC or non-Oracle RAC) after it has switched to the primary
role. The first trigger fires on the system start event and starts up the DBSERV
service:

CREATE OR REPLACE TRIGGER manage_service
AFTER STARTUP ON DATABASE
DECLARE
 role VARCHAR(30);
BEGIN
 SELECT database_role INTO role FROM v$database;
 IF role = 'PRIMARY' THEN
 dbms_service.start_service('DBSERV');
 END IF;
END;

The second trigger fires when the standby database remains open during a
failover and switchover upon a database role change. It relocates the DBSERV
service from the old primary to the new primary database and disconnects any
connections to that service on the old primary database so that IMDB Cache and
its client applications can reconnect to the new primary database:

CREATE OR REPLACE TRIGGER relocate_service
AFTER DB_ROLE_CHANGE ON DATABASE
DECLARE
 role VARCHAR(30);
BEGIN
 SELECT database_role INTO role FROM v$database;
 IF role = 'PRIMARY' THEN
 dbms_service.start_service('DBSERV');
 ELSE
 dbms_service.stop_service('DBSERV');
 dbms_lock.sleep(2);
 FOR x IN (SELECT s.sid, s.serial#
 FROM v$session s, v$process p
 WHERE s.service_name='DBSERV' AND s.paddr=p.addr)
 LOOP
 BEGIN
 EXECUTE IMMEDIATE
 'ALTER SYSTEM DISCONNECT SESSION
 ''' || x.sid || ','|| x.serial# || ''' IMMEDIATE';
 EXCEPTION WHEN OTHERS THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE(DBMS_UTILITY.FORMAT_ERROR_STACK);
 END;
 END;
 END LOOP;
 END IF;
END;

6. As an option, to reduce the performance impact to IMDB Cache applications and
minimize the downtime during a physical or logical standby database switchover,
run the following procedure right before initiating the Data Guard switchover to a
physical or logical standby database:

How IMDB Cache works with Data Guard

11-4 Oracle In-Memory Database Cache User's Guide

DECLARE
 role varchar(30);
BEGIN
 SELECT database_role INTO role FROM v$database;
 IF role = 'PRIMARY' THEN
 dbms_service.stop_service('DBSERV');
 dbms_lock.sleep(2);
 FOR x IN (SELECT s.sid, s.serial#
 FROM v$session s, v$process p
 WHERE s.service_name='DBSERV' AND s.paddr=p.addr)
 LOOP
 BEGIN
 EXECUTE IMMEDIATE
 'ALTER SYSTEM DISCONNECT SESSION
 ''' || x.sid || ',' || x.serial# || ''' IMMEDIATE';
 EXCEPTION WHEN OTHERS THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE(DBMS_UTILITY.FORMAT_ERROR_STACK);
 END;
 END;
 END LOOP;
 ELSE
 dbms_service.start_service('DBSERV');
 END IF;
END;

This procedure should be executed first on the physical or logical standby
database, and then on the primary database, right before the switchover process.
Before executing the procedure for a physical standby database switchover, Active
Data Guard must be enabled on the physical standby database.

Before performing a switchover to a logical standby database, stop the Oracle service
for TimesTen on the primary database and disconnect all sessions connected to that
service. Then start the service on the standby database.

At this point, the cache applications try to reconnect to the standby database. If a
switchover occurs, there is no wait required to migrate the connections from the
primary database to the standby database. This eliminates the performance impact on
IMDB Cache and its applications.

See the Maximum Availability Architecture, Oracle Best Practices for High Availability
white paper for more information.

Configuring the TimesTen database
Configure TimesTen to receive notification of FAN HA events and to avoid
reconnecting to a failed Oracle instance. Use the Oracle Client shipped with IMDB
Cache.

1. Create an Oracle Net service name that includes all primary and standby hosts in
ADDRESS_LIST. For example:

DBSERV =
(DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = PRIMARYDB)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = STANDBYDB)(PORT = 1521))
 (LOAD_BALANCE = yes)
)
 (CONNECT_DATA= (SERVICE_NAME=DBSERV))
)

How IMDB Cache works with Data Guard

Using Oracle In-Memory Database Cache with Data Guard 11-5

2. In the client's sqlnet.ora file, set the SQLNET.OUTBOUND_CONNECT_TIMEOUT
parameter to enable clients to quickly traverse an address list in the event of a
failure. For example, if a client attempts to connect to a host that is unavailable, the
connection attempt is bounded to the time specified by the SQLNET.OUTBOUND_
CONNECT_TIMEOUT parameter, after which the client attempts to connect to the
next host in the address list. Connection attempts continue for each host in the
address list until a connection is made.

Setting the SQLNET.OUTBOUND_CONNECT_TIMEOUT parameter to a value of 3
seconds suffices in most environments. For example, add the following entry to
the sqlnet.ora file:

SQLNET.OUTBOUND_CONNECT_TIMEOUT=3

How IMDB Cache works with Data Guard

11-6 Oracle In-Memory Database Cache User's Guide

12

SQL*Plus Scripts for Oracle In-Memory Database Cache 12-1

12SQL*Plus Scripts for Oracle In-Memory
Database Cache

This chapter lists the SQL*Plus scripts that are installed with Oracle In-Memory
Database Cache used to perform various configuration, administrative and monitoring
tasks, and provides links to more information including examples. All scripts are
installed in the TimesTen_install_dir/oraclescripts directory.

Installed SQL*Plus scripts
■ cacheCleanUp.sql: Drops Oracle objects such as change log tables and triggers

used to implement autorefresh operations. Script is used when a TimesTen
database containing autorefresh cache groups is unavailable because the TimesTen
system is offline, or the database was destroyed without dropping its autorefresh
cache groups. Run this script as the cache administration user. See "Dropping
Oracle objects used by autorefresh cache groups" on page 7-14 for more
information.

■ cacheInfo.sql: Returns change log table information for all Oracle tables
cached in an autorefresh cache group, and information about Oracle objects used
to track DDL statements issued on cached Oracle tables. Script is used to monitor
autorefresh operations on cache groups and DDL statements issued on cached
Oracle tables. Run this script as the cache administration user. See "Monitoring
autorefresh operations on cache groups" on page 7-5 and "Tracking DDL
statements issued on cached Oracle tables" on page 7-6 for more information.

■ grantCacheAdminPrivileges.sql: Grants privileges to the cache
administration user that are required to automatically create Oracle objects used to
manage the caching of Oracle data when particular cache grid and cache group
operations are performed. Run this script as the sys user. See "Automatically
create Oracle objects used to manage caching of Oracle data" on page 3-9 for more
information.

■ initCacheAdminSchema.sql: Grants a minimal set of privileges to the cache
administration user and manually creates Oracle objects used to manage the
caching of Oracle data. Run this script as the sys user. See "Manually create
Oracle objects used to manage caching of Oracle data" on page 3-10 for more
information.

■ initCacheGlobalSchema.sql: Creates the Oracle timesten user, the Oracle
tables owned by the timesten user to store information about cache grids, and the
TT_CACHE_ADMIN_ROLE role that defines privileges on these Oracle tables. Script
must be run regardless of whether you are automatically or manually creating

Installed SQL*Plus scripts

12-2 Oracle In-Memory Database Cache User's Guide

Oracle objects used to manage caching of Oracle data. Run this script as the sys
user. See "Create the Oracle users" on page 3-2 for more information.

■ initCacheGridSchema.sql: Manually creates Oracle tables used to store
information about TimesTen databases that are associated with a particular cache
grid. Run this script as the sys user. See "Manually create Oracle objects used to
manage caching of Oracle data" on page 3-10 for more information.

■ README: Contains descriptions of the SQL*Plus scripts that are installed with
Oracle In-Memory Database Cache.

13

Compatibility Between TimesTen and Oracle 13-1

13Compatibility Between TimesTen and Oracle

This chapter lists compatibility issues between TimesTen and Oracle. The list is not
complete, but it indicates areas that require special attention. It includes the following
topics:

■ Summary of compatibility issues

■ Transaction semantics

■ API compatibility

■ SQL compatibility

■ Mappings between Oracle and TimesTen data types

Summary of compatibility issues
Consider the following differences between TimesTen and Oracle:

■ TimesTen and Oracle database metadata are stored differently. See "API
compatibility" on page 13-2 for more information.

■ TimesTen and Oracle have different transaction isolation models. See "Transaction
semantics" on page 13-1 for more information.

■ TimesTen and Oracle have different connection and statement properties. For
example, TimesTen does not support catalog names, scrollable cursors or
updateable cursors.

■ Sequences are not cached and synchronized between the TimesTen database and
the corresponding Oracle database. See "SQL expressions" on page 13-7 for more
information.

■ Side effects of Oracle triggers and stored procedures are not reflected in the
TimesTen database until after an automatic or manual refresh operation.

Transaction semantics
TimesTen and Oracle transaction semantics differ as follows:

■ Oracle serializable transactions can fail at commit time because the transaction
cannot be serialized. TimesTen uses locking to enforce serializability.

■ Oracle can provide both statement-level and transaction-level consistency by
using a multiversion consistency model. TimesTen does not provide
statement-level consistency. TimesTen provides transaction-level consistency by
using serializable isolation.

API compatibility

13-2 Oracle In-Memory Database Cache User's Guide

■ Oracle users can lock tables explicitly through SQL. This locking feature is not
supported in TimesTen.

■ Oracle supports savepoints while TimesTen does not.

■ In Oracle, a transaction can be set to be read-only or read/write. This is not
supported in TimesTen.

For more information about TimesTen isolation levels and transaction semantics, see
"Transaction Management and Recovery" in Oracle TimesTen In-Memory Database
Operations Guide.

API compatibility
For a complete list of the JDBC API classes and interfaces that TimesTen supports with
notes on which methods have a compatibility issue, see "Key JDBC classes and
interfaces" in Oracle TimesTen In-Memory Database Java Developer's Guide.

For a complete list of the ODBC API functions that TimesTen supports with notes on
which functions have a compatibility issue, see "TimesTen ODBC Functions and
Options" in Oracle TimesTen In-Memory Database C Developer's Guide.

For a complete list of the OCI functions for Oracle database, release 11.2.0.2, that
TimesTen supports with notes on which functions have a compatibility issue, see
"TimesTen Support for Oracle Call Interface" in Oracle TimesTen In-Memory Database C
Developer's Guide.

For information about TimesTen support for Pro*C/C++, see "TimesTen Support for
Oracle Pro*C/C++ Precompiler" in Oracle TimesTen In-Memory Database C Developer's
Guide.

For information about TimesTen support for ODP.NET, see Oracle Data Provider for
.NET Oracle TimesTen In-Memory Database Support User's Guide.

For information about TimesTen support for PL/SQL, see Oracle TimesTen In-Memory
Database PL/SQL Developer's Guide.

The TimesTen C++ Interface Classes (TTClasses) library provides a high-performance
interface to TimesTen that is easy to use. This C++ class library provides wrappers
around the most common ODBC functionality. This API is not available for the Oracle
Database. See Oracle TimesTen In-Memory Database TTClasses Guide.

SQL compatibility
This section compares TimesTen's SQL implementation with Oracle's SQL. The
purpose is to provide users with a list of Oracle SQL features not supported in
TimesTen or supported with different semantics.

Schema objects
TimesTen does not recognize some of the schema objects that are supported in Oracle.
TimesTen returns a syntax error when a statement manipulates or uses these objects.
TimesTen passes the statement to Oracle. The unsupported objects are:

Clusters
Objects created by the CREATE DATABASE statement
Objects created by the CREATE JAVA statement
Database links
Database triggers
Dimensions

SQL compatibility

Compatibility Between TimesTen and Oracle 13-3

Extended features
External procedure libraries
Index-organized tables
Mining models
Partitions
Object tables, types and views
Operators

TimesTen supports views and materialized views, but it cannot cache an Oracle view.
TimesTen can cache an Oracle materialized view in a user managed cache group
without the AUTOREFRESH cache group attribute and PROPAGATE cache table
attribute. The cache group must be manually loaded and flushed.

Caching and Oracle partitioned tables
TimesTen can cache Oracle partitioned tables at the table level, but individual
partitions cannot be cached. The following describes how operations on partitioned
tables affect cache groups:

■ DDL operations on a table that has partitions do not affect the cache group unless
there is data loss. For example, if a partition with data is truncated, an
AUTOREFRESH operation does not delete the data from the corresponding cached
table.

■ WHERE clauses in any cache group operations cannot reference individual
partitions or subpartitions. Any attempt to define a single partition of a table
returns an error.

Nonschema objects
TimesTen does not recognize some of the schema objects that are supported in Oracle.
TimesTen returns a syntax error when a statement manipulates or uses these objects.
TimesTen passes the statement to Oracle. The unsupported objects are:

Contexts
Directories
Editions
Restore points
Roles
Rollback segments
Tablespaces

Differences between Oracle and TimesTen tables
The Oracle table features that TimesTen does not support are:

■ ON DELETE SET NULL

■ Check constraints

■ Foreign keys that reference the table on which they are defined

Data type support
The following Oracle data types are not supported by TimesTen:

TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH

SQL compatibility

13-4 Oracle In-Memory Database Cache User's Guide

INTERVAL DAY TO SECOND
UROWID
BFILE
Oracle-supplied types
User-defined types

The following TimesTen data types are not supported by Oracle:

TT_CHAR
TT_VARCHAR
TT_NCHAR
TT_NVARCHAR
TT_BINARY
TT_VARBINARY
TINYINT and TT_TINYINT
TT_SMALLINT
TT_INTEGER
TT_BIGINT
TT_DECIMAL
TT_DATE
TIME and TT_TIME
TT_TIMESTAMP

SQL operators
TimesTen supports these operators and predicates that are supported by Oracle:

unary -
+, -, *, /
 =, <, >, <=, >=, <>, !=
||
IS NULL, IS NOT NULL
LIKE (Oracle LIKE operator ignores trailing spaces, but TimesTen does not)
BETWEEN
IN
NOT IN (list)
AND
OR
+ (outer join)
ANY, SOME
ALL (list)
EXISTS
UNION
MINUS
INTERSECT

Note: TimesTen NCHAR and NVARCHAR2 data types are encoded as
UTF-16. Oracle NCHAR and NVARCHAR2 data types are encoded as
either UTF-16 or UTF-8.

To cache an Oracle NCHAR or NVARCHAR2 column, the Oracle NLS_
NCHAR_CHARACTERSET encoding must be AL16UTF16, not
AL32UTF8.

SQL compatibility

Compatibility Between TimesTen and Oracle 13-5

To perform a bitwise AND operation of two bit vector expressions, TimesTen uses the
ampersand character (&) between the expressions while Oracle uses the BITAND
function with the expressions as arguments.

SELECT statements
TimesTen supports these clauses of a SELECT statement that are supported by Oracle:

■ FOR UPDATE

■ ORDER BY, including NULLS FIRST and NULLS LAST

■ GROUP BY, including ROLLUP, GROUPING_SETS and grouping expression lists

■ Table alias

■ Column alias

■ Subquery factoring clause with constructor

Oracle supports flashback queries, which are queries against a database that is in some
previous state (for example, a query on a table as of yesterday). TimesTen does not
support flashback queries.

TimesTen does not support the CONNECT BY clause.

SQL subqueries
TimesTen supports these subqueries that are supported by Oracle:

IN (subquery)
>,<,= ANY (subquery)
>,=,< SOME (subquery)
EXISTS (subquery)
>,=,< (scalar subquery)
Subqueries in WHERE clause of DELETE/UPDATE
Subqueries in FROM clause
Subquery factoring clause (WITH constructor)

SQL functions
TimesTen supports these functions that are supported by Oracle:

ABS
ADD_MONTHS
ASCIISTR
AVG
CAST
CEIL
COALESCE
CONCAT
COUNT
CHR

Note: A nonverifiable scalar subquery is a scalar subquery whose
'single-row-result-set' property cannot be determined until execution
time. TimesTen allows at most one nonverifiable scalar subquery in
the entire query and the subquery cannot be specified in an OR
expression.

SQL compatibility

13-6 Oracle In-Memory Database Cache User's Guide

DECODE
DENSE_RANK
EMPTY_BLOB
EMPTY_CLOB
EXTRACT
FIRST_VALUE
FLOOR
GREATEST
GROUP_ID
GROUPING
GROUPING_ID
INSTR
LAST_VALUE
LEAST
LENGTH
LOWER
LPAD
LTRIM
MAX
MIN
MOD
MONTHS_BETWEEN
NCHR
NLS_CHARSET
NLS_CHARSET_NAME
NLSSORT
NULLIF
NUMTOYMINTERVAL
NUMTODSINTERVAL
NVL
POWER
RANK
REPLACE
ROUND
ROW_NUMBER
RPAD
RTRIM
SIGN
SQRT
SUBSTR
SUM
SYS_CONTEXT
SYSDATE
TO_BLOB
TO_CLOB
TO_CHAR
TO_DATE
TO_LOB
TO_NCLOB
TO_NUMBER
TRIM
TRUNC
UID
UNISTR
UPPER

SQL compatibility

Compatibility Between TimesTen and Oracle 13-7

USER

These TimesTen functions are not supported by Oracle:

CURRENT_USER
GETDATE
ORA_SYSDATE
SESSION_USER
SYSTEM_USER
TIMESTAMPADD
TIMESTAMPDIFF
TT_HASH
TT_SYSDATE
TTGRIDNODENAME
TTGRIDMEMBERID
TTGRIDUSERASSIGNEDNAME

TimesTen and the Oracle Database interpret the literal N'\UNNNN' differently. In
TimesTen, N'\unnnn' (where nnnn is a number) is interpreted as the national
character set character with the code nnnn. In the Oracle Database, N'\unnnn' is
interpreted as 6 literal characters. The \u is not treated as an escape. This difference
causes unexpected behavior. For example, loading a cache group with a WHERE clause
that contains a literal can fail. This can also affects dynamic loading and cache grid
operation. Applications should use the UNISTR SQL function instead of literals.

SQL expressions
TimesTen supports these expressions that are supported by Oracle:

Column Reference
Sequence
NULL
()
Binding parameters
CASE expression
ROWID pseudocolumn
ROWNUM pseudocolumn

TimesTen and Oracle treat literals differently. See the description of
HexadecimalLiteral in "Constants" in Oracle TimesTen In-Memory Database SQL
Reference.

INSERT/DELETE/UPDATE/MERGE statements
TimesTen supports these DML statements that are supported by Oracle:

■ INSERT INTO ... VALUES

■ INSERT INTO ... SELECT

■ UPDATE WHERE expression (expression may contain a subquery)

■ DELETE WHERE expression (expression may contain a subquery)

TimesTen does not support updating of primary key values except when the new
value is the same as the old value.

Mappings between Oracle and TimesTen data types

13-8 Oracle In-Memory Database Cache User's Guide

TimesTen-only SQL and built-in procedures
This section lists TimesTen SQL statements and functions and built-in procedures that
are not supported by Oracle. With PassThrough=3, these statements are passed to
Oracle for execution and an error is generated.

■ All TimesTen cache group DDL and DML statements, including CREATE CACHE
GROUP, DROP CACHE GROUP, ALTER CACHE GROUP, LOAD CACHE GROUP,
UNLOAD CACHE GROUP, REFRESH CACHE GROUP and FLUSH CACHE GROUP.

■ All TimesTen replication management DDL statements, including CREATE
REPLICATION, DROP REPLICATION, ALTER REPLICATION, CREATE ACTIVE
STANDBY PAIR, ALTER ACTIVE STANDBY PAIR and DROP ACTIVE STANDBY
PAIR.

■ FIRST n clause

■ ROWS m TO n clause

■ All TimesTen built-in procedures. See "Built-In Procedures" in Oracle TimesTen
In-Memory Database Reference.

PL/SQL constructs
TimesTen supports a subset of stored procedure constructs, functions, data types,
packages and package bodies that are supported by Oracle. See Oracle TimesTen
In-Memory Database PL/SQL Developer's Guide for details.

Mappings between Oracle and TimesTen data types
When you choose data types for columns in the TimesTen cache tables, consider the
data types of the columns in the Oracle tables and choose an equivalent or compatible
data type for the columns in the cache tables.

Primary and foreign key columns are distinguished from non-key columns. The data
type mappings allowed for key columns in a cache table are shown in Table 13–1.

Note: TimeTen cache, including passthrough, does not support the
Oracle ROWID data type. However, you can cast any ROWID data type
to the CHAR data type when provided on the SELECT list in a SQL
query.

Table 13–1 Data type mappings allowed for key columns

Oracle data type TimesTen data type

NUMBER(p,s) NUMBER(p,s)

Note: DECIMAL(p,s) or NUMERIC(p,s) can also be used. They are
aliases for NUMBER(p,s).

NUMBER(p,0)

INTEGER

TT_TINYINT

TT_SMALLINT

TT_INTEGER

TT_BIGINT

NUMBER(p,0)

Mappings between Oracle and TimesTen data types

Compatibility Between TimesTen and Oracle 13-9

Table 13–2 shows the data type mappings allowed for non-key columns in a cache
table.

NUMBER TT_TINYINT

TT_SMALLINT

TT_INTEGER

TT_BIGINT

NUMBER

CHAR(m) CHAR(m)

VARCHAR2(m) VARCHAR2(m)

RAW(m) VARBINARY(m)

DATE DATE

TIMESTAMP(m) TIMESTAMP(m)

NCHAR(m) NCHAR(m)

NVARCHAR2(m) NVARCHAR2(m)

Table 13–2 Data type mappings allowed for non-key columns

Oracle data type TimesTen data type

NUMBER(p,s) NUMBER(p,s)

REAL

FLOAT

BINARY_FLOAT

DOUBLE

BINARY_DOUBLE

NUMBER(p,0)

INTEGER

TT_TINYINT

TT_SMALLINT

TT_INTEGER

TT_BIGINT

NUMBER(p,0)

FLOAT

BINARY_FLOAT

DOUBLE

BINARY_DOUBLE

Table 13–1 (Cont.) Data type mappings allowed for key columns

Oracle data type TimesTen data type

Mappings between Oracle and TimesTen data types

13-10 Oracle In-Memory Database Cache User's Guide

NUMBER TT_TINYINT

TT_SMALLINT

TT_INTEGER

TT_BIGINT

NUMBER

REAL

FLOAT

BINARY_FLOAT

DOUBLE

BINARY_DOUBLE

CHAR(m) CHAR(m)

VARCHAR2(m) VARCHAR2(m)

RAW(m) VARBINARY(m)

LONG VARCHAR2(m)

Note: m can be any valid value within the
range defined for the VARCHAR2 data type.

LONG RAW VARBINARY(m)

Note: m can be any valid value within the
range defined for the VARBINARY data type.

DATE DATE

TIMESTAMP(0)

TIMESTAMP(m) TIMESTAMP(m)

FLOAT(n)

Note: Includes DOUBLE and FLOAT, which are
equivalent to FLOAT(126). Also includes
REAL, which is equivalent to FLOAT(63).

FLOAT(n)

BINARY_DOUBLE

Note: FLOAT(126) can be declared as
DOUBLE. FLOAT(63) can be declared as
REAL.

BINARY_FLOAT BINARY_FLOAT

BINARY_DOUBLE BINARY_DOUBLE

NCHAR(m) NCHAR(m)

NVARCHAR2(m) NVARCHAR2(m)

CLOB VARCHAR2(m)

Note: 1<=m<=4 megabytes

BLOB VARBINARY(m)

Note: 1<=m<=16 megabytes

NCLOB NVARCHAR2(m)

Note: 1<=m<=4 megabytes

Table 13–2 (Cont.) Data type mappings allowed for non-key columns

Oracle data type TimesTen data type

Glossary-1

Glossary

aging

Delete cache instances from the cache tables of a cache group after a specified period
of time (time-based) or when a specified level of database usage is reached (LRU).

asynchronous writethrough (AWT) cache group

A cache group in which committed updates on TimesTen cache tables are
automatically and asynchronously propagated to the cached Oracle tables. The
commit on the TimesTen database occurs asynchronously from the commit on the
Oracle database.

automatic refresh

Committed updates on cached Oracle tables are automatically refreshed to the
TimesTen cache tables.

autorefresh cache group

A read-only cache group or a user managed cache group that uses the AUTOREFRESH
MODE INCREMENTAL cache group attribute.

bidirectional transmit

Propagate committed updates on TimesTen cache tables to the cached Oracle tables,
and refresh committed updates on cached Oracle tables to the TimesTen cache tables.

cache administration user

Oracle user that creates and maintains Oracle objects that store information used to
manage cache grids and enforce predefined behaviors of particular cache group types.

cache agent

A TimesTen process that processes cache group operations, such as automatic refresh,
loading a cache group, and passing through statements to the Oracle database for
execution.

cache group

Defines the data from the Oracle tables to cache in a TimesTen database. A cache
group can cache all or a subset of a single Oracle table or a set of related Oracle tables.
If multiple Oracle tables are cached, each cache table (except for the root table) must
reference another cache table in the cache group through foreign key constraints.

cache grid

Glossary-2

cache grid

A set of distributed grid members consisting of TimesTen in-memory databases that
work together to cache data from a single Oracle database and guarantee cache
coherence among the TimesTen databases.

cache group primary key

The primary key of the cache group's root table.

cache instance

A specific row of data identified by the primary key in the cache group's root table. If
there are multiple tables in the cache group, the cache instance consists of the set of
rows in the child tables associated by foreign key relationships with the row in the
root table.

cache manager user

TimesTen user that performs cache grid and cache group operations such as creating
and configuring a cache grid, and creating cache groups.

cache table

The root table or a child table in a cache group.

cache table users

TimesTen users who own cache tables.

child table

A cache table that has a foreign key reference to either the primary key of the root
table or another child table that either directly or indirectly references the root table.
The table hierarchy in your cache group can designate child tables to be parents of
other child tables. No cache table can be a child to more than one parent in the cache
group.

dynamic cache group

A cache group category for which data in its cache tables can be loaded on demand,
manually loaded or automatically loaded.

dynamic load

The transfer of data into the local grid member from Oracle tables when a query
cannot be satisfied with data in the cache grid members.

explicitly loaded cache group

A cache group category for which data in its cache tables are manually or
automatically loaded.

flush

To manually propagate committed inserts or updates on TimesTen cache tables in a
user managed cache group to the cached Oracle tables.

global cache group

A cache group classification where data in its cache tables are shared across multiple
TimesTen databases within a cache grid.

replication agent

Glossary-3

grid data transfer

Transfer of the cache instance from remote grid members to the local grid member in
response to a query that cannot be satisfied by data in the cache tables on the local grid
member.

grid member

A component of a cache grid consisting of either a standalone TimesTen database or
an active standby pair.

grid node

A TimesTen database of a grid member that is either a standalone database, or the
active database or standby database of an active standby pair.

load

Copy new cache instances from the cached Oracle tables to the TimesTen cache tables.
Cache instances that are already exist in the cache tables are not updated or deleted.

local cache group

A cache group classification where data in its cache tables are not shared across
multiple TimesTen databases even if the databases are members of the same cache
grid.

Oracle schema users

Oracle users who own Oracle tables to be cached in a TimesTen database.

Oracle timesten user

Oracle user who owns Oracle tables that store information about cache grids.

propagate

Transmit committed updates on TimesTen cache tables to the cached Oracle tables.

read-only cache group

A cache group in which committed updates on cached Oracle tables are automatically
refreshed to the TimesTen cache tables. You cannot update cache tables directly in a
read-only cache group.

refresh

For an explicitly loaded cache group, unload and then load the cache group.

For a dynamic cache group, replace existing cache instances in the cache tables with
the most current data from the cached Oracle tables.

replication

The process of maintaining duplicate copies of data in multiple databases.

replication agent

Replication at each master and subscriber TimesTen database is controlled by a
replication agent process. The replication agent on the master database reads the
transaction log records and transmits any committed updates on replicated elements
to the replication agent on the subscriber database. The replication agent on the
subscriber database then applies the updates to its database.

For an AWT cache group, the replication agent transmits committed updates on its
cache tables to the cached Oracle tables.

root table

Glossary-4

root table

The parent table in the cache group that does not reference any other table in the cache
group through a foreign key constraint. The primary key of the root table is the
primary key of the cache group.

synchronous writethrough (SWT) cache group

A cache group in which committed updates on TimesTen cache tables are
automatically and synchronously propagated to the cached Oracle tables. When an
application commits a transaction, it is committed on Oracle before it is committed on
TimesTen.

system managed cache group

System managed cache groups enforce predefined behaviors. The types of system
managed cache groups are read-only, synchronous writethrough and asynchronous
writethrough.

TT_CACHE_ADMIN_ROLE role

Role granted to the cache administration user that defines privileges on the Oracle
tables owned by the timesten user which store information about cache grids.

user managed cache group

A cache group that implements customized behavior such as bidirectional transmit.

unload

Delete cache instances from a cache table. The rows in the cached Oracle tables are not
affected.

Index-1

Index

 grid, see cache grid

A
active standby pair

active database, 6-3
create, 6-4
definition, 6-3
read-only subscriber database, 6-7
standby database, 6-5

aging policy
cache group, 4-35
LRU aging, 4-35
time-based aging, 4-37

asynchronous writethrough cache group, see AWT
cache group

autocommit
global queries, 6-9, 6-10

autorefresh
cleanup

drop Oracle objects, 7-14
definition, 1-5
example, 2-11
initiate, 4-26, 5-6
interval, 4-26
mode, 4-25
state, 4-26
status, 7-12

autorefresh cache group
change log table, 7-11
definition, 3-3
load and refresh, 5-4
manually create Oracle objects, 4-28
monitoring, 7-5
recovery method, 7-13
status, 7-12

AUTOREFRESH cache group attribute, 4-25
AWT cache group

create, 2-8, 4-11
definition, 1-5, 4-10
error reporting, 4-15, 4-17
monitoring, 7-5
parallel propagation, 4-13
restrictions, 4-16

awterrs file, 4-15, 4-17

B
BLOB data

caching in TimesTen, 4-33
built-in procedures

ttAgingLRUConfig, 4-36
ttAgingScheduleNow, 4-39
ttCacheAWTMonitorConfig, 7-5
ttCacheAWTThresholdSet, 7-5
ttCacheConfig, 7-13

AgentTimeout parameter, 7-11
TblSpaceFullRecovery parameter, 7-17
TblSpaceThreshold parameter, 7-16

ttCacheDbCgStatus, 7-13
ttCacheDDLTrackingConfig, 7-6
ttCachePolicySet, 3-19
ttCacheStart, 2-7, 3-17
ttCacheStop, 2-14, 3-17, 8-4
ttCacheUidGet, 3-17
ttCacheUidPwdSet, 2-4, 3-14
ttGridAttach, 2-9, 3-18, 4-45
ttGridCreate, 2-5, 3-16
ttGridDestroy, 2-14, 8-4
ttGridDetach, 2-13, 8-1
ttGridDetachList, 8-2
ttGridInfo, 7-5
ttGridNameSet, 2-5, 3-16
ttGridNodeStatus, 7-6
ttRepPolicySet, 4-12
ttRepStart, 2-9, 4-11
ttRepStateGet, 7-17
ttRepStateSet, 6-4
ttRepStop, 2-14, 4-12, 8-2
ttRepSubscriberWait, 7-7, 8-3

C
cache

manage, 3-9, 3-10
manage through Oracle object, 3-10
performance evaluation, 9-1

cache administration user
create, 2-2, 3-3, 9-5
default tablespace

create, 2-2, 3-3, 9-4
drop, 2-15, 8-5, 9-20, 9-21

Index-2

monitoring, 7-15
recover when full, 7-16
usage warning threshold, 7-15

definition, 2-2, 3-3
determine, 3-17
set in TimesTen database, 2-4, 3-14

Cache Advisor
configuration, 9-3
configure repository database, 9-6
configure target Oracle database, 9-3
configure TimesTen database, 9-8
executing, 9-11
identify target Oracle database, 9-12
overview, 9-1
post-processing clean up, 9-20
recommends cache group definitions, 9-1
supported configurations, 9-10
usage guidelines, 9-10

cache agent
connection failure, 7-3
reconnecting with Oracle Database, 10-1
start, 2-7, 3-17
start policy

and cache grid, 3-18
definition, 3-18
set, 3-19

status, 7-1
stop, 2-14, 3-17, 8-4
timeout, 7-11

cache grid
associate TimesTen database, 2-5, 3-16
attach a TimesTen database, 2-9, 4-45
cache agent

start policy, 3-18
cache agent start policy, 7-17
create, 2-5, 3-16
data transfer, 4-43, 4-44
definition, 1-1, 3-14
destroy, 2-14, 8-4
detach

set of TimesTen databases, 8-2
TimesTen database, 2-13, 8-1

failure, 7-17
global query with local join, 6-9
instance owner, 4-43
location of data, 6-10
member

attach, 7-17
definition, 1-1, 3-14
detach all, 8-2
sharing data, 6-7

member failure, 3-18
node

definition, 1-1, 3-15
Oracle system parameters, 3-15
recovery, 7-17
ten or more nodes, 3-15
using ttRepStateGet, 7-17

cache group
autorefresh

definition, 1-5, 3-3
create, 2-5
dead

recovery, 7-13
definition, 1-2, 4-1
dynamic load, 5-10
flush

definition, 1-5
load, 1-5
recommendations

Cache Advisor, 9-1
refresh, 1-5
table hierarchy, 4-4
table partition, 13-3

cache instance
definition, 1-3, 5-10
owner, 4-43
ownership, 4-41, 4-43
propagate

definition, 1-5
cache manager user

create, 2-4, 3-13, 9-9
defined, 3-12
definition, 2-3, 3-13
minimum privileges, 2-4, 3-13, 9-9

cache table
ON DELETE CASCADE attribute, 4-32
PROPAGATE attribute, 4-24
READONLY attribute, 4-25
UNIQUE HASH ON attribute, 4-33
user

create, 2-4, 3-13
defined, 3-13
definition, 2-4, 3-13

cacheAWTMethod first connection attribute, 5-25
CacheAwtParallelism data store attribute, 3-12, 4-13
cacheCleanUp.sql SQL*Plus script, 7-14, 12-1
CacheGridEnable connection attribute, 3-16
CacheGridMsgWait connection attribute, 4-44, 4-45
cachegroups ttIsql command, 2-8, 7-3
cacheInfo.sql SQL*Plus script, 12-1
cachesqlget ttIsql command, 4-28, 7-7
character set

on Oracle, 2-3, 9-8
child table

definition, 1-3, 4-3
CLOB data

caching in TimesTen, 4-33
CONNECT BY clause, 13-5
connection

between TimesTen and Oracle database, 3-17
failure

cache agent, 7-3
Oracle Database, 10-1
replication agent, 7-3

connection attributes
CacheGridEnable, 3-16
CacheGridMsgWait, 4-44, 4-45
DatabaseCharacterSet, 3-12
DynamicLoadEnable, 5-11

Index-3

DynamicLoadErrorMode, 5-16
LockLevel, 3-12
OracleNetServiceName, 3-11
OraclePWD, 3-12
PassThrough, 3-12, 5-18
PermSize, 3-11
PWD, 3-12
RACCallback, 10-4
TypeMode, 3-12
UID, 3-12

CREATE ACTIVE STANDBY PAIR statement, 6-4

D
Data Guard, 11-1
data store attributes

CacheAwtParallelism, 3-12
ReplicationApplyOrdering, 3-12

data type
differences between Oracle and TimesTen, 13-3
mapping between Oracle and TimesTen, 13-8
mapping for key columns, 13-8
mapping for non-key columns, 13-9

database
character set, 2-3, 9-8
duplicate, 6-5
temporary, 4-7

DatabaseCharacterSet connection attribute, 3-12
DDL statements

tracking, 7-6
DeadDbRecovery parameter, 7-13
DROP ACTIVE STANDBY PAIR statement

example, 8-3
DROP CACHE GROUP statement

example, 2-14, 8-3
DSN

Cache Advisor
TimesTen database, 9-9

DSN for TimesTen database
example, 2-3, 3-12

duplicating a database, 6-5
dynamic cache group

create, 4-40
definition, 1-6, 4-40

dynamic global cache group
dynamic load, 4-43

dynamic load
configuration, 5-10
definition, 4-43, 5-10
disable, 5-10
display errors, 5-16
examples, 2-12, 5-13
guidelines, 5-11
rules, 5-11

DynamicLoadEnable connection attribute, 5-10, 5-11
DynamicLoadErrorMode connection attribute, 5-16

E
environment variables

Microsoft Windows, 3-2
UNIX, 3-1

explicitly loaded cache group
definition, 1-6

F
failure

cache grid member, 7-17
Fast Application Notification (FAN), 10-1
FLUSH CACHE GROUP statement

definition, 5-16
example, 5-17

foreign key
index, 4-15
restriction, 4-15

G
global cache group

definition, 1-7, 4-41
dynamic load, 5-10
example, dynamic, 4-42
example, explicitly loaded, 4-44
explicitly loaded, 4-44
sharing data among grid members, 6-7

global cache groups
dynamic, 4-42
ownership changes, 7-6

global query, 6-8
autocommit, 6-9, 6-10
local join, 6-9

global unload operation, 5-17
GlobalLocalJoin optimizer flag, 6-9
GlobalProcessing optimizer flag, 6-9
GlobalProcessing optimizer hint

unload operation, 5-17
grantCacheAdminPrivileges.sql script, 9-5
grantCacheAdminPrivileges.sql SQL*Plus

script, 2-3, 3-10, 12-1
grid

member
port, 4-45

H
high availability

active standby pair, 1-8
cache grid, 1-8
Data Guard, 1-8
Oracle Real Application Clusters (Oracle

RAC), 1-8

I
index

foreign key, 4-15
initCacheAdminSchema.sql SQL*Plus script, 3-11,

12-1
initCacheGlobalSchema.sql script, 9-4
initCacheGlobalSchema.sql SQL*Plus script, 2-2, 3-3,

Index-4

9-5, 9-7, 12-1
initCacheGridSchema.sql SQL*Plus script, 3-11, 12-2
instance administrator, 2-4

L
LOAD CACHE GROUP

example, 5-8
LOAD CACHE GROUP statement

definition, 5-2
example, 2-10, 5-3
PARALLEL clause, 5-7
WITH ID clause, 5-5

LOB data
cache administration user privileges, 3-8
caching in TimesTen, 4-33
restrictions on caching, 4-34

local cache group
definition, 1-7

LockLevel connection attribute, 3-12
LRU aging policy, 4-35

M
materialized views

Oracle, 4-20, 13-3
Maximum Availability Architecture (MAA), 11-1
multiple-table cache group, 4-3

N
NCLOB data

caching in TimesTen, 4-33

O
OCIAttrGet() OCI function

OCI_ATTR_ROW_COUNT option, 5-18
ON DELETE CASCADE cache table attribute, 4-32
Oracle

autorefresh
cleanup, 7-14

AWT errors, 4-17
create objects to manage cache, 3-9
database character set

determine, 2-3, 3-12, 9-8
execution errors, 4-17
manually manage cache, 3-10
objects to manage cache

determine, 3-11
tables and triggers, 7-8

partitioned tables, 13-3
Oracle Database

connection failures, 10-1
differences from TimesTen, 13-1

Oracle Real Application Clusters (Oracle RAC), 10-1
Oracle schema users

create, 2-2, 3-3, 9-5
definition, 2-2, 3-3

Oracle Server releases
supported, 3-1

Oracle SQL*Plus scripts
cacheCleanUp.sql, 7-14, 12-1
cacheInfo.sql, 12-1
grantCacheAdminPrivileges.sql, 2-3, 3-10, 12-1
initCacheAdminSchema.sql, 3-11, 12-1
initCacheGlobalSchema.sql, 2-2, 3-3, 9-5, 9-7, 12-1
initCacheGridSchema.sql, 3-11, 12-2

Oracle synonyms
cache, 4-33

Oracle timesten user
definition, 2-1

Oracle users
cache administration user, 2-2
drop, 2-15, 8-5
privileges, 3-3
schema users, 2-2
timesten user, 2-1, 3-2

OracleNetServiceName connection attribute, 3-11
OraclePWD connection attribute, 3-12
owner

cache instance, 4-43
ownership

cache instance, 4-41, 4-43

P
parallel propagation

AWT cache groups, 4-13
foreign key

restriction, 4-15
partition, 13-3
PassThrough connection attribute, 3-12, 5-18

and RETURN TWOSAFE, 5-18
passthrough level

changing, 5-25
setting, 5-18

performance
Cache Advisor, 9-1
comparison between Oracle and TimesTen, 9-2

PermSize connection attribute, 3-11
port

cache grid member, 4-45
privileges

Oracle users, 3-3
propagate

example, 2-12
propagate cache instances

definition, 1-5
PROPAGATE cache table attribute, 4-24
propagation

error reporting, 4-17
PWD connection attribute, 3-12

Q
query

cache grid, 6-8
global, 6-8

Index-5

R
RACCallback connection attribute, 10-4
read-only cache group

create, 2-8, 4-8
definition, 1-4, 4-7
restrictions, 4-9

READONLY cache table attribute, 4-25
refresh

cache group, 1-5
initiate, 5-6

REFRESH CACHE GROUP
example, 5-8

REFRESH CACHE GROUP statement
definition, 5-2
example, 5-3
PARALLEL clause, 5-7
WITH ID clause, 5-5

refresh now, 4-26
replication agent

connection failure, 7-3
start, 2-9, 4-11
start policy

definition, 4-12
set, 4-12

status, 7-1
stop, 2-14, 4-12, 8-2

ReplicationApplyOrdering data store attribute, 3-12,
4-13

ReplicationParallelism data store attribute, 4-13
root table

definition, 1-3, 4-4

S
scripts

IMDB Cache, 12-1
SQL*Plus, 12-1

SELECT statement
cache grid, 6-8
global, 6-8

semantics
differences between Oracle and TimesTen, 13-1

single-table cache group, 4-3
sliding window

cache group, 4-39
SQL

differences between TimesTen and Oracle, 13-2
SQLRowCount() ODBC function, 5-18
Statement.getUpdateCount() JDBC method, 5-18
synchronous writethrough (SWT) cache group

create, 4-19
definition, 1-5, 4-17
restrictions, 4-19

sys.odbc.ini
Cache Advisor

example, 9-9
system managed cache groups, 4-6

T
tables

Oracle, 7-8
partition, 13-3

tablespace
create default, 2-2, 3-3, 9-4
drop default, 2-15, 8-5, 9-20, 9-21
full, 7-16
monitoring default, 7-15
recover when full, 7-16, 7-17
threshold, 7-15, 7-16
usage notification, 7-15

TblSpaceFullRecovery parameter, 7-17
time-based aging policy, 4-37
TimesTen users

cache manager user, 2-3, 3-13
cache table users, 2-4, 3-13

transaction log file threshold for AWT cache groups
set, 7-5

transaction semantics
differences between Oracle and TimesTen, 13-1

Transparent Application Failover (TAF), 10-1
triggers

Oracle, 7-8
TT_CACHE_ADMIN_ROLE role

definition, 2-2
drop, 2-15, 9-20, 9-21

tt_cache_admin_role role
definition, 3-2
drop, 8-5

ttAdmin utility
-cachePolicy command, 3-19
-cacheStart command, 3-17
-cacheStop command, 3-17
-cacheUidGet command, 3-17
-cacheUidPwdSet command, 3-14
-query command, 7-1
-repPolicy command, 4-13
-repStart command, 4-12
-repStop command, 4-12

ttAgingLRUConfig built-in procedure, 4-36
ttAgingScheduleNow built-in procedure, 4-39
ttCacheAdvisor utility

-oraConn option, 9-12
-oraDirObject option, 9-12
-oraTarget option, 9-12
usage, 9-11

ttCacheAutorefresh built-in procedure, 4-26, 5-6
ttCacheAWTMonitorConfig built-in procedure, 7-5
ttCacheAWTThresholdSet built-in procedure, 7-5
ttCacheConfig

usage notification, 7-15
ttCacheConfig built-in procedure

AgentTimeout parameter, 7-11
DeadDbRecovery parameter, 7-13
full tablespace, 7-16
TblSpaceFullRecovery parameter, 7-17
TblSpaceThreshold parameter, 7-16

ttCacheDbCgStatus built-in procedure, 7-13
ttCacheDDLTrackingConfig built-in procedure, 7-6

Index-6

ttCachePolicySet built-in procedure, 3-19
ttCacheStart built-in procedure, 2-7, 3-17
ttCacheStop built-in procedure, 2-14, 3-17, 8-4
ttCacheUidGet built-in procedure, 3-17
ttCacheUidPwdSet built-in procedure, 2-4, 3-14, 9-9
ttDestroy utility, 8-4
ttGridAttach built-in procedure, 2-9, 4-45, 7-17

calling after database failure, 3-18
ttGridCreate built-in procedure, 2-5, 3-16
ttGridDestroy built-in procedure, 2-14, 8-4
ttGridDetach built-in procedure, 2-13, 8-1
ttGridDetachAll built-in procedure, 8-2
ttGridDetachList built-in procedure, 8-2
ttGridGlobalCGResume built-in procedure, 7-6
ttGridGlobalCGSuspend built-in procedure, 7-6
ttGridInfo built-in procedure, 7-5
TTGRIDMEMBERID() SQL function, 6-10
ttGridNameSet built-in procedure, 2-5, 3-16
TTGRIDNODENAME() SQL function, 6-10
ttGridNodeStatus built-in procedure, 7-6
TTGRIDUSERASSIGNEDNAME() SQL

function, 6-10
ttIsql set dynamicloadenable command, 5-11
ttIsql set dynamicloaderrormode command, 5-16
ttIsql utility, 2-4, 9-9

cachegroups command, 2-8, 7-3
cachesqlget command

INCREMENTAL AUTOREFRESH
option, 4-28

ORACLE_DDL_TRACKING option, 7-7
set passthrough command, 5-25

ttOptSetFlag built-in procedure
DynamicLoadEnable flag, 5-11
DynamicLoadErrorMode flag, 5-16
PassThrough flag, 5-25

ttRepAdmin -duplicate utility, 6-5
-keepCG option, 6-5
-noKeepCG option, 6-7

ttRepPolicySet built-in procedure, 4-12
ttRepStart built-in procedure, 2-9, 4-11
ttRepStateGet built-in procedure, 7-17
ttRepStateSet built-in procedure, 6-4
ttRepStop built-in procedure, 2-14, 4-12, 8-2
ttRepSubscriberWait built-in procedure, 7-7, 8-3
ttStatus utility, 7-1
TypeMode connection attribute, 3-12

U
UID connection attribute, 3-12
UNIQUE HASH ON cache table attribute, 4-33
unload cache group

global, 5-17
UNLOAD CACHE GROUP statement

definition, 5-17
example, 5-17

user managed cache group
bidirectional transmit, 4-19
create, 4-20, 4-22
definition, 1-5, 4-19

V
views

Oracle, 4-20, 13-3

W
WHERE clause, 4-29

referencing Oracle PL/SQL functions, 4-31

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility

	What's New
	New features in Release 11.2.2.4.0
	New features in Release 11.2.2.2.0
	New features in Release 11.2.2.1.0
	New features in Release 11.2.2.0.0

	1 Oracle In-Memory Database Cache Concepts
	Overview of a cache grid
	Overview of cache groups
	Cache instance
	Cache group types
	Transmitting updates between the TimesTen and Oracle databases
	Loading data into a cache group: Explicitly loaded and dynamic cache groups
	Sharing data across a cache grid: Local and global cache groups
	Summary of cache group types

	High availability caching solution

	2 Getting Started
	Setting up the Oracle and TimesTen systems
	Create users in the Oracle database
	Create a DSN for the TimesTen database
	Create users in the TimesTen database
	Set the cache administration user name and password in the TimesTen database

	Creating a cache grid
	Creating cache groups
	Create the Oracle tables to be cached
	Start the cache agent
	Create the cache groups
	Start the replication agent for the AWT cache group

	Attaching the TimesTen database to the cache grid
	Performing operations on the read-only cache group
	Manually load the cache group
	Update the cached Oracle table

	Performing operations on the dynamic updatable global cache group
	Dynamically load the cache group
	Update the TimesTen cache table

	Cleaning up the TimesTen and Oracle systems
	Detach the TimesTen database from the cache grid
	Stop the replication agent
	Drop the cache groups
	Destroy the cache grid
	Stop the cache agent and destroy the TimesTen database
	Drop the Oracle users and their objects

	Procedure for caching Oracle data in TimesTen

	3 Setting Up a Caching Infrastructure
	Configuring your system to cache Oracle data in TimesTen
	Oracle In-Memory Database Cache environment variables for UNIX
	Oracle In-Memory Database Cache environment variables for Microsoft Windows

	Configuring the Oracle database to cache data in TimesTen
	Create the Oracle users
	Grant privileges to the Oracle users
	Automatically create Oracle objects used to manage caching of Oracle data
	Manually create Oracle objects used to manage caching of Oracle data

	Configuring a TimesTen database to cache Oracle data
	Define a DSN for the TimesTen database
	Create the TimesTen users
	Grant privileges to the TimesTen users
	Set the cache administration user name and password

	Configuring a cache grid
	Modify the PROCESSES Oracle system parameter for ten or more grid nodes
	Create a cache grid
	Associate a TimesTen database with a cache grid

	Testing the connectivity between the TimesTen and Oracle databases
	Managing the cache agent
	Set a cache agent start policy

	4 Defining Cache Groups
	Cache groups and cache tables
	Single-table cache group
	Multiple-table cache group

	Creating a cache group
	Read-only cache group
	Restrictions with read-only cache groups

	Asynchronous writethrough (AWT) cache group
	Managing the replication agent
	Configuring parallel propagation to Oracle tables
	What an AWT cache group does and does not guarantee
	Restrictions with AWT cache groups
	Reporting Oracle execution errors for AWT cache groups

	Synchronous writethrough (SWT) cache group
	Restrictions with SWT cache groups

	User managed cache group
	PROPAGATE cache table attribute
	READONLY cache table attribute

	AUTOREFRESH cache group attribute
	Altering a cache group to change the AUTOREFRESH mode, interval or state
	Manually creating Oracle objects for autorefresh cache groups

	Using a WHERE clause
	Proper placement of WHERE clause in a CREATE CACHE GROUP statement
	Referencing Oracle PL/SQL functions in a WHERE clause

	ON DELETE CASCADE cache table attribute
	UNIQUE HASH ON cache table attribute

	Caching Oracle synonyms
	Caching Oracle LOB data
	Implementing aging in a cache group
	LRU aging
	Time-based aging
	Manually scheduling an aging process
	Configuring a sliding window

	Dynamic cache groups
	Global cache groups
	Dynamic global cache groups
	Explicitly loaded global cache groups
	Start the replication agent
	Attach a TimesTen database to a cache grid

	5 Cache Group Operations
	Transmitting updates between the TimesTen and Oracle databases
	Loading and refreshing a cache group
	Loading and refreshing an explicitly loaded cache group with autorefresh
	Loading and refreshing a dynamic cache group with autorefresh
	Loading and refreshing a cache group using a WITH ID clause
	Initiating an immediate autorefresh
	Loading and refreshing a multiple-table cache group
	Improving the performance of loading or refreshing a large number of cache instances
	Example of manually loading and refreshing an explicitly loaded cache group
	Example of manually loading and refreshing a dynamic cache group

	Dynamically loading a cache instance
	Dynamic load configuration
	Dynamic load guidelines
	Examples of dynamically loading a cache instance
	Return dynamic load errors

	Flushing a user managed cache group
	Unloading a cache group
	Unloading a cache group across all grid members

	Determining the number of cache instances affected by an operation
	Setting a passthrough level
	PassThrough=0
	PassThrough=1
	PassThrough=2
	PassThrough=3
	PassThrough=4
	PassThrough=5
	Considerations for using passthrough
	Changing the passthrough level for a connection or transaction

	Cache performance
	Dynamic load performance
	Improving AWT throughput

	6 Creating Other Cache Grid Members
	Creating and configuring a subsequent standalone TimesTen database
	Replicating cache tables
	Create and configure the active database
	Create and configure the standby database
	Create and configure the read-only subscriber database

	Example of data sharing among the grid members
	Performing global queries on a cache grid
	Performing global queries with local joins
	Obtaining information about the location of data in the cache grid

	Adding other elements to a cache grid or grid member

	7 Managing a Caching Environment
	Checking the status of the cache and replication agents
	Cache agent and replication connections

	Monitoring cache groups and cache grids
	Using the ttIsql utility's cachegroups command
	Monitoring autorefresh operations on cache groups
	Monitoring AWT cache groups
	Configuring a transaction log file threshold for AWT cache groups
	Obtaining information for a cache grid
	Suspending global AWT cache group operations
	Tracking DDL statements issued on cached Oracle tables

	Managing a caching environment with Oracle objects
	Impact of failed autorefresh operations on TimesTen databases
	Dropping Oracle objects used by autorefresh cache groups
	Monitoring the cache administration user's tablespace
	Receiving notification on tablespace usage
	Recovering from a full tablespace

	Recovering after failure of a grid node
	Backing up and restoring a database with cache groups

	8 Cleaning up the Caching Environment
	Detaching a TimesTen database from a cache grid
	Stopping the replication agent
	Dropping a cache group
	Destroying a cache grid
	Stopping the cache agent
	Destroying the TimesTen databases
	Dropping the Oracle users and objects

	9 Using the Cache Advisor
	Cache Advisor overview
	Setting up the Oracle and TimesTen host systems
	Configure the target Oracle database and host system
	Configure the repository Oracle database and host system
	Configure the TimesTen database and host system
	Cache Advisor configuration options and usage guidelines
	Supported configuration options for hosts and databases
	Restrictions and assumptions

	Running a SQL workload application
	Running the Cache Advisor
	Viewing the Cache Advisor reports
	Cleaning up the Oracle and TimesTen databases and host systems
	Clean up the target Oracle database and host system
	Clean up the repository Oracle database and host system
	Clean up the TimesTen database and host system

	10 Using Oracle In-Memory Database Cache in an Oracle RAC Environment
	How IMDB Cache works in an Oracle RAC environment
	Restrictions on using IMDB Cache in an Oracle RAC environment
	Setting up IMDB Cache in an Oracle RAC environment

	11 Using Oracle In-Memory Database Cache with Data Guard
	Components of MAA for Oracle In-Memory Database Cache
	How IMDB Cache works with Data Guard
	Configuring the Oracle databases
	Configuring the TimesTen database

	12 SQL*Plus Scripts for Oracle In-Memory Database Cache
	Installed SQL*Plus scripts

	13 Compatibility Between TimesTen and Oracle
	Summary of compatibility issues
	Transaction semantics
	API compatibility
	SQL compatibility
	Schema objects
	Caching and Oracle partitioned tables

	Nonschema objects
	Differences between Oracle and TimesTen tables
	Data type support
	SQL operators
	SELECT statements
	SQL subqueries
	SQL functions
	SQL expressions
	INSERT/DELETE/UPDATE/MERGE statements
	TimesTen-only SQL and built-in procedures
	PL/SQL constructs

	Mappings between Oracle and TimesTen data types

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

