Oracle® R Enterprise User's Guide Release 1.3 for Linux and Windows Part Number E36761-04 |
|
|
PDF · Mobi · ePub |
Predictive models allow you to predict future behavior based on past behavior. After you build a model, you use it to score new data, that is, make predictions.
R allows you to build many kinds of models. When you predict new results (score data) using an R model, the data must be in an R frame. The ore.predict
package, included with Oracle R Enterprise, allows you to use an R model to score data that is in an ore.frame
, that is, database resident- data.
ore.predict()
allows you to make predictions only using ore.frame
objects; you cannot rebuild the model.
If you need to build models with data in a database table, consider building an Oracle Data Mining model using the OREdm package, described in In-Database Predictive Models in Oracle R Enterprise.
For more information, see the R help associated with ore.predict
().
ore.predict()
allows you to score (predict using) these R models:
lm()
Linear regression models
glm()
Generalized linear models
hclust()
Hierarchical clustering models
kmeans()
(k-Means clustering)
negbin()
(glm.nb
) Negative binomial generalized binomial models
nnet::multinom
Multinomial log-linear model
nnet::nnet
neural network models
rpart::rpart
Recursive partitioning and regression tree models
This code builds a linear regression model irisModel
(built using lm
) on the iris
data and then scores IRIS (a table that could be created by pushing iris
to the database):
R> irisModel <- lm(Sepal.Length ~ ., data = iris) R> IRIS <- ore.push(iris) R> IRISpred <- ore.predict(irisModel, IRIS, se.fit = TRUE, interval = "prediction") R> IRIS <- cbind(IRIS, IRISpred) R> head(IRIS) Sepal.Length Sepal.Width Petal.Length Petal.Width Species PRED SE.PRED LOWER.PRED UPPER.PRED 1 5.1 3.5 1.4 0.2 setosa 5.004788 0.04479188 4.391895 5.617681 2 4.9 3.0 1.4 0.2 setosa 4.756844 0.05514933 4.140660 5.373027 3 4.7 3.2 1.3 0.2 setosa 4.773097 0.04690495 4.159587 5.386607 4 4.6 3.1 1.5 0.2 setosa 4.889357 0.05135928 4.274454 5.504259 5 5.0 3.6 1.4 0.2 setosa 5.054377 0.04736842 4.440727 5.668026 6 5.4 3.9 1.7 0.4 setosa 5.388886 0.05592364 4.772430 6.005342