Skip Headers
Oracle® Data Mining Application Developer's Guide
11
g
Release 2 (11.2)
Part Number E12218-07
Home
Book List
Contents
Master Index
Contact Us
Previous
PDF
·
Mobi
·
ePub
Index
A
B
C
D
E
F
G
I
J
K
L
M
N
O
P
R
S
T
U
A
ADD_COST_MATRIX,
6.4
ADP,
2.1.2
,
3.1.2
,
5.3.2
See
Automatic Data Preparation
ALGO_NAME,
5.2.1
algorithms,
5.2.2
ALL_MINING_MODEL_ATTRIBUTES,
2.2
,
3.2.4.1
ALL_MINING_MODEL_SETTINGS,
2.2
,
5.2.6
ALL_MINING_MODELS,
2.2
anomaly detection,
1.1.3
,
5.2.2
,
5.3.1
,
5.3.1
,
6.5
apply,
2.1.1.2
batch,
6.5
real time,
6.2
See also
scoring
ApplySettings object,
2.4.3.6
Apriori,
5.2.2
,
5.2.2
association rules,
5.2.2
,
5.3.1
,
5.4
attribute importance,
3.2.6
,
5.2.2
,
5.3.1
,
5.4
attribute name,
3.2.5
attribute subname,
3.2.5
attributes,
3
,
3.2
B
build data,
3.1.2
BuildSettings object,
2.4.3.4
C
case ID,
2.4.3.1
,
3.1
,
3.1
,
3.1.1
,
3.2.4
,
6.5.1
case table,
3
catalog views,
2.2
categorical,
3.2.3
centroid,
5.4
classes,
3.2.3
classification,
5.2.2
,
5.2.2
,
5.3.1
CLUSTER_ID,
1.1.1
,
2.3
,
6.3.2.1
CLUSTER_PROBABILITY,
2.3
,
6.3.2.2
CLUSTER_SET,
2.3
,
6.3.2.3
clustering,
2.3
,
5.2.2
,
6.3.2
collection types,
3.3.1
,
4.3
constants,
5.3.1
cost matrix,
6.4
costs,
6.3.1.3
,
6.4
CREATE_MODEL,
2.1.1.1
,
5.3
CTXSYS.DRVODM,
4.1
D
data
dimensioned,
3.3.2
for data mining,
3
missing values,
3.4
multi-record case,
3.3.2
nested,
3.3
preparing,
2.1.2
sparse,
3.4
transactional,
3.3.2
,
3.3.4
transformations,
5.3.2
data dictionary views,
2.2
Data Mining Engine,
2.4.1
,
2.4.3.4
,
2.4.3.4
data types,
3.1.1
DBMS_DATA_MINING,
2.1
,
5.3
DBMS_DATA_MINING_TRANSFORM,
2.1
,
2.1.2
,
5.3.2
DBMS_PREDICTIVE_ANALYTICS,
1.3
,
2.1
,
2.1.3
DBMS_SCHEDULER,
2.4.3.3
Decision Tree,
2.3
,
5.2.2
,
5.3.1
,
5.4
,
6.3
,
6.3.1.4
demo programs,
5.5.3
dimensioned data,
3.3.2
DM_NESTED_CATEGORICALS,
3.2.3
,
3.3.1.2
DM_NESTED_NUMERICALS,
3.2.3
,
3.3.1.1
,
3.3.3
,
4.3
,
4.3
,
4.4.6
dmsh.sql,
4.2
dmtxtfe.sql,
4.2
E
embedded transformations,
2.1.2
,
3.1.2
,
5.3.2
EXPLAIN,
2.1.3
F
feature extraction,
2.3
,
5.2.2
,
5.3.1
,
6.3.3
,
6.3.3
FEATURE_EXPLAIN table function,
4.1
,
4.4.1
,
4.4.5.1
FEATURE_ID,
2.3
,
6.3.3.1
FEATURE_PREP table function,
4.1
,
4.4.1
,
4.4.4.1
FEATURE_SET,
2.3
,
6.3.3.3
FEATURE_VALUE,
2.3
,
6.3.3.2
G
GET_MODEL_DETAILS,
2.1.1.1
,
5.4
GET_MODEL_DETAILS_XML,
6.3.1.4
GLM,
5.2.2
,
5.4
See
Generalized Linear Models
I
index preference,
4.1
J
Java API,
2.4
,
7
K
k
-Means,
5.2.2
,
5.3.1
,
5.4
L
linear regression,
2.3
,
5.3.1
logistic regression,
2.3
,
5.3.1
M
market basket data,
3.3.4
,
3.3.4
Minimum Description Length,
5.2.2
,
5.2.2
mining model schema objects,
2.2
,
5.5
missing value treatment,
3.4.3
missing values,
3.4
Model,
2.4.3.4
model details,
3.2.6
,
5.1
,
5.4
model signature,
3.2.4
models
algorithms,
5.2.2
deploying,
6.2
privileges for,
5.5.2
scoring,
6
settings,
5.2.6
steps in creating,
5.1
N
Naive Bayes,
5.2.2
,
5.3.1
,
5.4
nested data,
3.3
,
4.3
,
4.4.6
NMF,
5.4
See
Non-Negative Matrix Factorization
Non-Negative Matrix Factorization,
5.3.1
numerical,
3.2.3
O
O-Cluster,
5.2.2
,
5.3.1
ODMS_ITEM_ID_COLUMN_NAME,
3.3.4
ODMS_ITEM_VALUE_COLUMN_NAME,
3.3.4
One-Class SVM,
1.1.3
,
5.3.1
Oracle Text,
4.1
outliers,
1.1.3.1
P
PhysicalDataSet,
2.4.3.1
PhysicalDataSet object,
2.4.3.1
PIPELINED,
3.2.6
PL/SQL API,
1
,
1
,
2.1
PREDICT,
2.1.3
PREDICTION,
1.1.2
,
1.1.3.3
,
2.3
,
6.3.1.1
,
6.4
PREDICTION_BOUNDS,
2.3
,
6.3.1.2
PREDICTION_COST,
2.3
,
6.3.1.3
PREDICTION_DETAILS,
1.2
,
2.3
PREDICTION_PROBABILITY,
1.1.1
,
1.1.2
,
1.1.3.1
,
2.3
,
6.3
,
6.3.1.5
PREDICTION_SET,
2.3
,
6.3.1.6
predictive analytics,
1.3
,
2.1.3
PREP_AUTO,
5.3.2
privileges,
5.5.2
PROFILE,
1.3
,
2.1.3
R
regression,
5.2.2
,
5.2.2
,
5.3.1
REMOVE_COST_MATRIX,
6.4
reverse transformations,
3.2.4.1
,
3.2.6
,
3.2.6
,
5.4
rules,
6.3.1.4
S
sample programs,
5.5.3
scoping of attribute name,
3.2.5
scoring,
1.1.1
,
2.1.1.2
,
2.3
,
6
batch,
6.5
data,
3.1.2
saving results,
6.3.4
See also
apply
settings table,
2.4.3.2
sparse data,
3.4
,
3.4
SQL AUDIT,
5.5
SQL COMMENT,
5.5
SQL data mining functions,
1
,
2.3
STACK,
2.1.2
,
5.3.2
supermodels,
3.1.2
supervised mining functions,
5.3.1
Support Vector Machine,
5.2.2
,
5.3.1
,
5.4
SVM
See
Support Vector Machine
SVM_CLASSIFIER index preference,
4.1
,
4.4.1
,
4.4.3
T
target,
3.2.2
,
3.2.4
,
3.2.4.1
test data,
3.1.2
text mining,
4
,
4
text transformation,
4
Java,
4.1
PL/SQL,
4.1
transactional data,
Preface
,
3.1
,
3.3.2
,
3.3.2
,
3.3.4
,
3.3.4
transformation list,
5.3.2
transformations,
2.1.2
,
3
,
3.2.4.1
,
3.2.6
,
3.2.6
,
5.3.2
transparency,
3.2.6
,
5.4
U
unsupervised mining functions,
5.3.1
Scripting on this page enhances content navigation, but does not change the content in any way.